• Title/Summary/Keyword: gamma-radiation dose rate

Search Result 348, Processing Time 0.026 seconds

A Study on the Environmental Radiation of Concrete Apartments and Neighborhood Living Facilities (콘크리트 공동주택과 근린생활 시설의 환경방사선에 관한 연구)

  • Ji, Tae-Jeong;Kwak, Byung-Joon;Min, Byung-In
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2009
  • In this study, the space gamma dose rates in the apartments structured with concrete were measured in accordance with construction year. In addition, the environmental radiation rates coming from the subway platforms and the road tunnels were analyzed in the equivalent dose by multiplying the absorbed dose with the radiation weighting factors. The space gamma dose rates measured in apartments were higher than those of outdoor which was $0.08{\sim}0.11uSv/h$ in the natural conditions. Especially, the older construction year is, the higher becomes space gamma dose rate. The average gamma dose rates in the subway platforms were measured. In the case of Busan and Daegu subway, the earlier the opening year is, the higher becomes dose rate. However, the dose rates of Seoul subway Lines were high overall, regardless of opening year. Seoul subway Line 6 showed the highest value of 0.21uSv/h. The gamma dose rate in road tunnels was higher than one of the outdoor and increased with opening year like as apartment. In dose rate comparison of the concrete structures with the outdoor, therefore, the space gamma dose rate of indoor is higher than one of the outdoor and the older structures have a higher dose rate.

A CCD Camera Lens Degradation Caused by High Dose-Rate Gamma Irradiation (고 선량율 감마선 조사에 따른 렌즈의 열화)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1450-1455
    • /
    • 2009
  • Assumed that an IPTV camera system is to be used as an ad-hoc sensor for the surveillance and diagnostics of safety-critical equipments installed in the in-containment building of the nuclear power plant, an major problem is the presence of high dose-rate gamma irradiation fields inside the one. In order to uses an IPTV camera in such intense gamma radiation environment of the in-containment building, the radiation-weakened devices including a CCD imaging sensor, FPGA, ASIC and microprocessors are to be properly shielded from high dose-rate gamma radiation using the high-density material, lead or tungsten. But the passive elements such as mirror, lens and window, which are placed in the optical path of the CCD imaging sensor, are exposed to a high dose-rate gamma ray source directly. So, the gamma-ray irradiation characteristics of the passive elements, is needed to test. A CCD camera lens, made of glass material, have been gamma irradiated at the dose rate of 4.2 kGy/h during an hour up to a total dose of 4 kGy. The radiation induced color-center in the glass lens is observed. The degradation performance of the gamma irradiated lens is explained using an color component analysis.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

Assessment of the terrestrial gamma radiation dose in Korea

  • Choi, Seok-Won;Yun, Ju-Yong;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Jong-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.161-165
    • /
    • 2005
  • The gamma-ray dose rates in air at 233 locations in Korea have been determined. The contribution to the gamma-ray dose rates in air due to the presence of $^{232}Th-series,\;^{238}U-series\;and\;^{40}K$ is as follows: 47.3% $(36\;nGyh^{-1})\;^{232}Th-series$ 14.5% $(11\;nGyh^{-1})\;^{238}U-series$ and 38.2% $(29\;nGyh^{-1})\;^{40}K$. The mean gamma-ray dose rate theoretically derived from $^{232}Th-series,\;^{238}U-series\;and\;^{40}K\;was\;76{\pm}17\;nGyh^{-1}$. This corresponds to an annual effective dose of $410\;{\mu}Sv$ and an annual collective dose of 18900 person-Sv for all provinces under study. The results have been compared with other global radiation dose.

Calculation of Neutron and Gamma-Ray Flux-to-Dose-Rate Conversion Factors (중성자(中性子) 및 감마선(線)에 대한 선량율(線量率) 환산인자(換算因子) 계산(計算))

  • Kwon, Seog-Guen;Lee, Soo-Yong;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.8-24
    • /
    • 1981
  • This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute(ANSI) N666. These data are used to calculated the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from $2.5{\times}10^{-8}$ to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoetiergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be a useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions.

  • PDF

Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device (CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험)

  • Lee, Hyun-Jin;Lee, Nam-Ho;Hwang, Young-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

PRIMORDIAL RADIONUCLIDES DISTRIBUTION AND DOSE EVALUATION IN UDAGAMANDALAM REGION OF NILGIRIS IN INDIA

  • Manikandan, N.Muguntha;Selvasekarapandian, S.;Sivakumar, R.;Meenakshisundaram, V.;Raghunath, V.M.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.183-190
    • /
    • 2001
  • The activity concentration of primordial radionuclides i.e., $^{238}U$ series, $^{232}Th$ series and $^{40}K$, in soil samples collected from Udagamandalam environment, have been measured by employing NaI (Tl) Gamma ray Spectrometer. The absorbed gamma dose rate has also been simultaneously measured by using both Environmental Radiation Dosimeter at each soil sampling location (ambient gamma dose) as well as from the gamma dose derived from the activity concentration of the primordial radionuclides. The results of activity concentration of each radio nuclides in soil, absorbed dose rate in air due to soil activity and possible cosmic radiation at each location along with human effective dose equivalent for Udagamandalam environment are presented and discussed.

  • PDF

AN ASSESSMENT OF THE RADIATION DOSE RATE DUE TO AN OCCURRENCE OF THE DEFECT ON THE SPENT NUCLEAR FUEL ROD

  • Lee, Sang-Hun;Moon, Joo-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.144-150
    • /
    • 2009
  • This study examines how much the radiation dose rate around it varies if a crack occurs on the spent nuclear fuel rod. The spent nuclear fuel rod to be examined is that of Kori unit 3&4. The source terms are evaluated using the ORIGEN-ARP that is part of the version 5.1 of the SCALE package. The radiation dose rate is assessed using the TORT. To check if the structure of a fuel rod is appropriately modeled in the TORT calculation, the calculation results by the TORT are compared with those by the ANISN for the same case. From the code simulation, it is known that if a crack occurs on the spent nuclear fuel rod, the neutron dose rate varies depending on what material is the crack filled with, but the gamma dose rate varies irrespective of type of the material that the crack is filled with.

Indirect assessment of internal irradiation from tritium decay on Lemna Minor duckweed

  • Ifayefunmi, O.S.;Mirseabasov, O.A.;Synzynys, B.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1991-1999
    • /
    • 2021
  • The response changes of the specific growth rate of Lemna minor duckweed was modeled using the logarithms of frond numbers on tritium activity concentration and gamma radiation dose from cobalt 60. The concept of average specific growth rate depends on the general exponential growth pattern, where toxicity is estimated based on the effect on the growth rate. One of the main questions of the effect of the radiation dose on duckweed is how to correlate the effect of beta radiation with the effect of any other radiation for modeling radiation on Lemna minor. Experimental data were extrapolated by utilizing the OECD guidelines. A linear relationship of absorbed dose and activity concentration was obtained for the average dependency growth rate of Lemna minor as D = (0.1257)·A0.585. The dose rate of gamma irradiation from 60Co increases with tritium activity dependence, on the specific growth rate of the Lemna minor duckweed. An increase in the tritium activity causes a decrease in the specific growth rate of the Lemna minor duckweed. It indicates that as the quantity of the beta radiation dose increase in Lemna minor duckweed, a higher quantity of gamma radiation will be required to cause the same effect in the specific growth rate of Lemna minor duckweed. The relation between the inhibition of the Lemna minor seedling growth and gamma and beta radiation dosage agrees roughly with that between the decrease of survival rate or fertility and dosage.

Effects of Gamma Radiation on the Germination, Growth and Enzyme (peroxidase and catalase) Activities of Old Vegetable Seed (묵은 채소 종자의 발아와 생육 및 효소활성에 미치는 $\gamma$선의 영향)

  • 김재성;백명화;김동희;이영근;정규회
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • To determine the effect of low dose gamma radiation on the germination and enzyme activities, seeds of Chinese cabbage (Brassica compestris L. cv. Hanyoreum) and radish (Raphanus sativus L. cv. Chungsukoungzoung) were irradiated at the dose of 2-50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage. The germination rate of Chinese cabbage was high at 2 Gy and 8 Gy irradiation group and that of radish was high at 2 Gy, 6 Gy and 10 Gy irradiation group. Growth of both seedlings of Chinese cabbage and radish increased positively in low dose irradiation group. The height of Chinese cabbage was noticeably high at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seedlings from seeds irradiated with the low dose gamma radiation was higher than the control, especially at the early stage. The enzyme activities of seedlings from seeds irradiated with the low dose gamma radiation was high at 4 Gy and 10 Gy irradiation group. These results suggest that the germination, growth and enzyme activities of old vegetable seeds could be promoted by the low dose gamma radiation.

  • PDF