• Title/Summary/Keyword: gamma radiation

Search Result 2,154, Processing Time 0.031 seconds

Mutation Spectrum of Manganese (II) Peroxidase Gene in the Pleurotus ostreatus Mutants Induced by Gamma Radiation

  • Chang, Hwa-Hyoung;Lee, Young-Keun;Kim, Jae-Sung;Lee, Ki-Sung;Cho, Kyu-Seong
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • The mutational spectra in the manganese (II) peroxidase gene (mnp) of the Pleurotus ostreatus mutants induced by gamma radiation (Co$\^$60/) give evidence to prove the effect of gamma radiation on the gene. mnp of each mutant was cloned, sequenced and analyzed. Among the 1941 base pairs of the sequenced region of the mnP genes of 4 mutants (PO-5,-6,-15 and -16), nine mutational hotspots on which the same base was mutated simultaneously were found, additionally 6 mutations were also found at different positions in the mnp gene. These mutation-spectra were predominantly A:T\longrightarrowG:C transitions (50.1%). By the analysis of putative amino acid sequences, PO-5 and PO-16 mutants have 3 and 1 mutated residues, respectively. Since the mutational spectra reported herein are specific to the mnp gene, we propose that the mutational hotspots for the gamma radiation could be in the gene(5) within cells.

Antioxidant Activity of Cooking Juice Irradiated with Gamma-ray (감마선 조사된 수산자숙액의 항산화 활성 연구)

  • Choi, Jong-Il;Kim, Jae-Hun;Song, Beom-Seok;Kim, Jae-Kyung;Park, Jong-Heum;Lee, Ju-Woon
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.165-168
    • /
    • 2011
  • The antioxidant activity was analyzed in gamma-irradiated cooking juices. Because the activities of antioxidants have been attributed to various mechanisms, different assay methods including 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP), have been conducted and compared. All of these antioxidant assay showed that the antioxidant activity of cooking juice was increased by gamma-irradiation. To investigate this increase of antioxidative activity, the protein was extracted from cooking juices and its antioxidant activity was measured. From the results, it was thought that the modification of protein in cooking juiced by irradiation caused the increase of antioxidant activity of cooking juice. Therefore, gamma irradiation could be an promising method for a sterilization of cooking juice with increased antioxidant activity.

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.

Assessment of the terrestrial gamma radiation dose in Korea

  • Choi, Seok-Won;Yun, Ju-Yong;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Jong-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.161-165
    • /
    • 2005
  • The gamma-ray dose rates in air at 233 locations in Korea have been determined. The contribution to the gamma-ray dose rates in air due to the presence of $^{232}Th-series,\;^{238}U-series\;and\;^{40}K$ is as follows: 47.3% $(36\;nGyh^{-1})\;^{232}Th-series$ 14.5% $(11\;nGyh^{-1})\;^{238}U-series$ and 38.2% $(29\;nGyh^{-1})\;^{40}K$. The mean gamma-ray dose rate theoretically derived from $^{232}Th-series,\;^{238}U-series\;and\;^{40}K\;was\;76{\pm}17\;nGyh^{-1}$. This corresponds to an annual effective dose of $410\;{\mu}Sv$ and an annual collective dose of 18900 person-Sv for all provinces under study. The results have been compared with other global radiation dose.

Gamma Irradiation Induced Transcriptional Repression of the Gibberellin Acid Regulating Genes in Arabidopsis Plants

  • Kim, Jin-Baek;Goh, Eun Jeong;Ha, Bo-Keun;Kim, Sang Hoon;Kang, Si-Yong;Jang, Cheol Seong;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The model plant, Arabidopsis thaliana is the subject of an international genome research project. Massive doses of ionizing radiation have been shown to induce physiological changes in plants. The wild-type (Ler) Arabidopsis plants were irradiated with 100 Gy and 800 Gy of gamma-ray. Gibberellin (GA) affects developmental processes and responses according to the various environment conditions in diverse plant. The 13 GA isomers were analyzed at vegetative (VE) and reproductive (RE) stages by HPLC. Total GA contents were reduced with the increase in radiation doses at VE and RE stages. Specifically, levels of GA3, GA4, GA12, and GA34 were significantly reduced with the increase of radiation doses. Oligonucleotide microarrays analysis was performed with Arabidopsis plants at different developmental stages and doses of gamma-ray. Through the microarray data, we isolated 41 genes related to GA biosynthesis and signaling transduction. Expression of these genes was also decreased as the reduction of GA contents. Interestingly, in GA signaling related gene expression, gibberellin-responsive protein, putative (At2g18420) was down-regulated at VE and RE stages. Myb21 (At3g27810), Myb24 (At5g40350), and Myb57 (At3g01530) was down-regulated at RE stage. In GA biosynthesis related gene expression, YAP169 (At5g07200) and GA20ox2 (At5g51810) were down-regulated at 100 Gy treatment of VE stage and 800 Gy treatment of RE stage in cytoplasm, respectively. However, exceptively, GA3ox2 (At1g80340) was up-regulated at 100 Gy treatment of RE stage in cytoplasm. In this study, the wild type (Ler) Arabidopsis plants showed differences in response with development stage at the various doses of gamma-rays. GA contents change was reported in gamma irradiated plant.

Effects of Gamma Radiation on the Germination, Growth and Enzyme (peroxidase and catalase) Activities of Old Vegetable Seed (묵은 채소 종자의 발아와 생육 및 효소활성에 미치는 $\gamma$선의 영향)

  • 김재성;백명화;김동희;이영근;정규회
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • To determine the effect of low dose gamma radiation on the germination and enzyme activities, seeds of Chinese cabbage (Brassica compestris L. cv. Hanyoreum) and radish (Raphanus sativus L. cv. Chungsukoungzoung) were irradiated at the dose of 2-50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage. The germination rate of Chinese cabbage was high at 2 Gy and 8 Gy irradiation group and that of radish was high at 2 Gy, 6 Gy and 10 Gy irradiation group. Growth of both seedlings of Chinese cabbage and radish increased positively in low dose irradiation group. The height of Chinese cabbage was noticeably high at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seedlings from seeds irradiated with the low dose gamma radiation was higher than the control, especially at the early stage. The enzyme activities of seedlings from seeds irradiated with the low dose gamma radiation was high at 4 Gy and 10 Gy irradiation group. These results suggest that the germination, growth and enzyme activities of old vegetable seeds could be promoted by the low dose gamma radiation.

  • PDF

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

Physiological and molecular analysis of OsTPS30 by gamma irradiation

  • Kim, Se Won;Jung, In Jung;Kim, Sang Hoon;Choi, Hong-Il;Kang, Si-Yong;Kim, Jin-Baek
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2019
  • Terpenes constitute a large class of secondary metabolites in plants. The Oryza sativa terpene synthase is a vital gene in plant defense response. In this study, the molecular and physiological functions of Oryza sativa terpene synthase 30 (OsTPS30, LOC_Os08g07080) were investigated after exposure of the seeds and plants to gamma-rays. The OsTPS30 expression was slightly induced at 200 Gray (Gy), but was significantly induced at 400 Gy. The total terpenoid was synthesized more in OsTPS30-overexpressing (OX-OsTPS30) Arabidopsisthaliana plants than in wild-type (WT) plants. The OX-OsTPS30 plants exhibited resistance to gamma-rays, as compared to WT. The OX-OsTPS30 plants had significantly increased height and weight after gamma irradiation. Additionally, the activity of antioxidant enzymes was increased more in OX OsTPS30 plants than in WT plants after gamma irradiation. Furthermore, the OsTPS30-GFP fusion protein was mostly localized in the chloroplast, suggesting that OsTPS30 is putative MEP pathway-related terpene synthase.

Impact of gamma radiation on 8051 microcontroller performance

  • Charu Sharma;Puspalata Rajesh;R.P. Behera;S. Amirthapandian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4422-4430
    • /
    • 2022
  • Studying the effects of gamma radiation on the instrumentation and control (I&C) system of a nuclear power plant is critical to the successful and reliable operation of the plant. In the accidental scenario, the adverse environment of ionizing radiation affects the performance of the I&C system and it leads to inaccurate and incomprehensible results. This paper reports the effects of gamma radiation on the AT89C51RD2, a commercial-off-the-shelf 8-bit high-performance flash microcontroller. The microcontroller, selected for the device under test for this study is used in the remote terminal unit for a nuclear power plant. The custom circuits were made to test the microcontroller under different gamma doses using a 60Co gamma source in both ex-situ and in-situ modes. The device was exposed to a maximum dose of 1.5 kGy. Under this hostile environment, the performance of the microcontroller was studied in terms of device current and voltage changes. It was observed that the microcontroller device can operate up to a total absorbed dose of approximately 0.6 kGy without any failure or degradation in its performance.