• Title/Summary/Keyword: galvanostatic experiment

Search Result 17, Processing Time 0.02 seconds

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

Effects of stabilizing elements on mechanical and electrochemical characteristics of stainless steel in marine environment (안정화 원소 첨가에 따른 스테인리스강의 기계적 특성과 해수환경 하에서의 전기화학적 특성)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1087-1093
    • /
    • 2014
  • Stainless steels stabilized with Ti or Nb are largely used in offshore and shipbuilding industries due to its excellent corrosion resistance. In this study, carbide stabilizers, Ti and Nb, were added to stainless steel 304 specimens with different concentrations(Ti: 0.26%, 0.71%, Nb: 0.29%, 0.46%, 0.71%), and their mechanical and electrochemical characteristics were evaluated. Micro-Vickers hardness testing was employed to characterize the mechanical characteristics with alloying elements. Electrochemical evaluation techniques including Tafel analysis, cyclic polarization experiment, galvanostatic experiment were utilized to compare the corrosion characteristics of the specimens. The result of hardness tests revealed that Nb containing specimens showed increasing hardness with increasing alloying contents while adding Ti had little effect on increase in hardness. In the case of electrochemical measurements, the electrochemical characteristics of the specimens were enhanced with increasing Nb contents while they were deteriorated with increasing Ti contents. As a result, different stabilizers and their contents may produce significant differences in electrochemical characteristics, and there such effect must be taken account of in development of stainless steels for marine environment.

Characteristics of surface damage with applied current density and cavitation time variables for 431 stainless steel in seawater (431 스테인리스강의 해수 내 적용 전류밀도 및 캐비테이션 시간 변수에 따른 표면손상 특성)

  • Kim, Seong-Jong;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.883-889
    • /
    • 2014
  • It is generated for cavitation erosion due to the local static boiling by pressure differentials in high speed rotating fluid environment. The cavitation is influenced by various elements such as pressure, velocity, temperature, pH of fluid and medium. In particular, the damage of material is accelerated due to the electrochemical corrosion by $C1^-$ and cavitation erosion due to cavities in seawater. In this paper, hence, it investigated for martensite stainless steel the damage behavior with applied current density and cavitation time in natural seawater solution. Less damage depth at the cavitation condition was observed than static condition as a result of galvanostatic experiment. Furthermore, it was shown that dramatic increase of weightloss, damage rate and damage depth after 3 hour of cavitation test.

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

Basic study and patent analysis of electrochemical denitrification from industrial wastewater (산업폐수(産業廢水)로부터 전해처리(電解處理)에 의한 탈질(脫窒) 연구(硏究) 및 특허(特許) 분석(分析))

  • Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.52-60
    • /
    • 2007
  • Denitrification from aqueous solution was investigated through patent analysis and electrochemical denitrification experiment. Among several candidates, biological treatment and oxidation/reduction method are mainly discussed. Recently, patent pending concerning to electrochemical treatment is increasing. Based on basic electrochemical study, total nitrogen was removed up 47% by 1-hour galvanostatic electrolysis with Fe cathode and Pt anode. More applicable technique to industry could be mentioned combination of two or more technologies suitable to waste water characteristics. In the case of small and concentrate effluent, combination of chemical and electrochemical treatment would be recommendable because nitrate could be easily converted to nitrite by chemical treatment, and in that case denitrification by electrolysis becomes more efficient and metal ions from chemical treatment can be recovered during electrolysis.

Effect of applied current density on the corrosion damage with galvanostatic corrosion experiment of aluminum alloy for ship (선박용 알루미늄 합금의 정전류 부식 시험에 의한 부식 손상에 미치는 인가 전류밀도의 영향)

  • Kim, Yeong-Bok;Park, Il-Cho;Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.106-106
    • /
    • 2018
  • 해양환경용 선박재료는 전기화학적인 부식을 발생시키는 염소이온($Cl^-$)이 다량 포함된 부식 환경에 장기간 노출되어 있어 부식에 대해 취약하다. 따라서 우수한 내식성 및 내침식성을 가진 재료를 선정하는 것은 매우 중요하다. 알루미늄 합금은 충분한 강도와 부동태 피막 형성으로 인해 내식성이 우수하여 해양환경용 선박 재료로서 널리 이용되고 있으며, 이에 따른 부식 특성에 관한 연구도 활발히 이뤄지고 있다. 그러나 선박에서는 부식에 의한 손상뿐만 아니라 전식에 의한 부식 손상도 발생할 수 있다. 특히 선미 부분은 프로펠러의 동합금과 알루미늄 합금의 이종금속 간 전위차에 의한 전식이 발생하여 선체의 다른 부위에 비해 부식이 더 심하게 진행될 수도 있다. 또한 전식은 해안 부두에 접안된 선박의 용접 시미주전류(stray current)에 의한 부식손상이 발생할 수 있으나 이에 대한 연구는 미미한 실정이다. 따라서 본 연구는 해양환경에서의 전식을 인위적으로 모사할 수 있는 부식 정전류 시험법을 이용하여 다양한 크기의 전식 손상을 유발시켰으며, 해양환경 하에서 선박재료로 주로 사용되는 알루미늄 합금인 Al5083-H321, Al5052-O, Al6061-T6에 대한 전식 특성을 비교, 분석하였다. 실험 방법으로 작동전극은 각 재료의 시험편을 $2cm{\times}2cm$ 으로 절단하여 sand paper # 2000 번까지 연마 후 아세톤과 증류수로 세척하고 건조하였으며, 제작된 시험편은 자체 제작한 홀더를 이용하여 $1cm^2$만 노출시킨 후 정전류 가속 실험을 실시하였다. 기준전극은 은/염화은(Ag/AgCl) 전극을, 대응전극은 백금(Pt) 전극을 사용하였다. 정전류 가속 조건은 $0.001mA/cm^2$, $0.1mA/cm^2$, $1mA/cm^2$, $5mA/cm^2$, $10mA/cm^2$의 전류 밀도를 천연해수에서 30분간 인가하였다. 각 재료에 대한 전식 특성은 실험 전후의 무게 감소량으로 전식의 저항 특성을 확인하였다. 그리고 3D 현미경으로 표면 손상 경향과 깊이를 측정하였으며, 주사전자현미경 (SEM)을 통해 표면 형상을 미시적으로 관찰하였다. 부식 정전류 시험 결과 모든 시편에서 $0.01mA/cm^2$에서 미세한 국부적인 부식이 일어났으며, 전류밀도가 증가할수록 표면 전반에 부식이 진행되고 성장하였다. 그리고 모든 인가 전류밀도의 조건에서 Al6061-T6가 5000계열(Al5083-H321, Al5052-O)보다 더 우수한 내식성을 나타났다.

  • PDF