DOI QR코드

DOI QR Code

Effects of stabilizing elements on mechanical and electrochemical characteristics of stainless steel in marine environment

안정화 원소 첨가에 따른 스테인리스강의 기계적 특성과 해수환경 하에서의 전기화학적 특성

  • Lee, Jung-Hyung (Division of Marine Engineering, Mokpo Maritime University) ;
  • Choi, Yong-Won (Division of Marine Engineering, Mokpo Maritime University) ;
  • Jang, Seok-Ki (Division of Marine Engineering, Mokpo Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
  • Received : 2014.08.07
  • Accepted : 2014.11.17
  • Published : 2014.11.30

Abstract

Stainless steels stabilized with Ti or Nb are largely used in offshore and shipbuilding industries due to its excellent corrosion resistance. In this study, carbide stabilizers, Ti and Nb, were added to stainless steel 304 specimens with different concentrations(Ti: 0.26%, 0.71%, Nb: 0.29%, 0.46%, 0.71%), and their mechanical and electrochemical characteristics were evaluated. Micro-Vickers hardness testing was employed to characterize the mechanical characteristics with alloying elements. Electrochemical evaluation techniques including Tafel analysis, cyclic polarization experiment, galvanostatic experiment were utilized to compare the corrosion characteristics of the specimens. The result of hardness tests revealed that Nb containing specimens showed increasing hardness with increasing alloying contents while adding Ti had little effect on increase in hardness. In the case of electrochemical measurements, the electrochemical characteristics of the specimens were enhanced with increasing Nb contents while they were deteriorated with increasing Ti contents. As a result, different stabilizers and their contents may produce significant differences in electrochemical characteristics, and there such effect must be taken account of in development of stainless steels for marine environment.

Ti과 Nb과 같은 안정화 원소가 첨가된 스테인리스강은 입계부식 방지 효과가 있어 해양 및 조선 산업에 널리 사용되는 내식성 재료이다. 본 연구에서는 STS 304 주성분에 탄소 안정화 원소인 Ti(0.26%, 0.71%)와 Nb(0.29%, 0.46%, 0.71%)을 농도 변수로 첨가한 시편을 제작하여, 안정화 원소 함량에 따른 기계적 특성 및 전기화학적 특성을 평가하였다. 합금 원소 첨가에 따른 재료의 기계적 특성 파악을 위해 마이크로 비커스 경도기를 이용하여 경도 측정을 실시하였다. 재료의 전기화학적 특성을 파악하기 위해 타펠분석, 사이클릭 분극(Cyclic polarization) 실험, 정전류 실험을 실시하여 재료별 내식성을 상호 비교하였다. 실험 결과, Nb 첨가 시편의 경우 Nb 함량 증가에 따라 경도 향상을 나타냈으나, Ti의 경우 경도 향상 효과가 미미한 것으로 나타났다. 전기화학특성의 경우 Nb 함량 증가에 따라 대체적으로 전기화학적 특성이 개선되는 반면 Ti의 경우 오히려 전기화학특성이 열화되는 것으로 나타났다. 결과적으로, 안정화 원소의 종류와 함량에 따라 전기화학적 특성이 큰 차이를 나타내며, 해수환경에 적용되는 스테인리스강 강종 개발시 이를 고려한 설계가 중요할 것으로 사료된다.

Keywords

References

  1. J. O. Moon and C. H. Lee, "Precipitation and precipitate coarsening behavior according to Nb addition in the weld HAZ of a Ti-containing steel," Journal of the Korean Welding & Joining Society, vol. 26, no. 1, pp. 76-82, 2008 (in Korean). https://doi.org/10.5781/KWJS.2008.26.1.076
  2. S. A. John, Corrosion of stainless steels: Wiley, 1996.
  3. E. E. Stansbury and R. A. Buchanan, Fundamentals of electrochemical corrosion, American Society for Metals international, 2000.
  4. R. Knutsen and A. Ball, "The influence of inclusions on the corrosion behavior of a 12 wt% chromium steel," Corrosion, vol. 47, no. 5, pp. 359-368, 1991. https://doi.org/10.5006/1.3585266
  5. N. Dowling, C. Duret-Thual, G. Auclair, J. Audouard, and P. Combrade, "Effect of complex inclusions on pit initiation in 18% chromium-8% nickel stainless steel types 303, 304, and 321," Corrosion, vol. 51, no. 5, pp. 343-355, 1995. https://doi.org/10.5006/1.3293599
  6. K. J. Blom and J. Degerbeck, "Low manganese austenitic stainless steel has improved resistance to pitting and crevice corrosion," Materials Performance, vol. 22, pp. 52-54, 1983.
  7. J. Degerbeck, "Influence of Mn compared to that of Cr, Mo and S on resistance to initiation of pitting and crevice corrosion in austenitic stainless steels," Materials and Corrosion, vol. 29, pp. 179-188, 1978. https://doi.org/10.1002/maco.19780290304
  8. L. Peguet, B. Malki, and B. Baroux, "Influence of cold working on the pitting corrosion resistance of stainless steels," Corrosion Science, vol. 49, no. 4, pp. 1933-1948, 2007. https://doi.org/10.1016/j.corsci.2006.08.021
  9. H. Krawiec, V. Vignal, O. Heintz, R. Oltra, E. Finot, and J. Olive, "Local electrochemical studies after heat treatment of stainless steel: role of induced metallurgical and surface modifications on pitting triggering," Metallurgical and Materials Transactions A, vol. 35, no. 11, pp. 3515-3521, 2004. https://doi.org/10.1007/s11661-004-0188-3
  10. D. E. Williams, M. R. Kilburn, J. Cliff, and G. I. Waterhouse, "Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion," Corrosion Science, vol. 52, no. 11, pp. 3702-3716, 2010. https://doi.org/10.1016/j.corsci.2010.07.021
  11. ASTM, "Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of Iron-, Nickel-, or Cobalt-based alloys," ASTM G61-86, 2009.
  12. K. Guan, X. Xu, H. Xu, and Z. Wang, "Effect of aging at $700^{\circ}C$ on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds," Nuclear Engineering and Design, vol. 235, no. 23, pp. 2485-2494, 2005. https://doi.org/10.1016/j.nucengdes.2005.06.006
  13. Y. Iwabuchi, "Effect of nitrogen and delta-ferrite contents on mechanical properties, corrosion resistance and abrasive wear in type SCS 13 stainless cast steel," Materials Transactions, vol. 33, no. 6, pp. 627-631, 1992. https://doi.org/10.2320/matertrans1989.33.627
  14. D. Y., Kim, Mechanical Properties and Intergranular Corrosion Behaviors of Welded AISI 304 Stainless Steels Containing Nb, M.S., Graduate School of Industry, Chonnam National University, Korea, 2000 (in Korean).
  15. E. McCafferty, "Validation of corrosion rates measured by the tafel extrapolation method," Corrosion Science, vol. 47, no. 12, pp. 3202-3215, 2005. https://doi.org/10.1016/j.corsci.2005.05.046
  16. S. Frangini and N. De Cristofaro, "Analysis of the galvanostatic polarization method for determining reliable pitting potentials on stainless steels in crevice-free conditions," Corrosion Science, vol. 45, no. 12, pp. 2769-2786, 2003. https://doi.org/10.1016/S0010-938X(03)00102-1
  17. G. Frankel, L. Stockert, F. Hunkeler, and H. Boehni, "Metastable pitting of stainless steel," Corrosion, vol. 43, no. 7, pp. 429-436, 1987. https://doi.org/10.5006/1.3583880
  18. J. Jayaraj, D. Sordelet, D. Kim, Y. Kim, and E. Fleury, "Corrosion behaviour of Ni-Zr-Ti-Si-Sn amorphous plasma spray coating," Corrosion Science, vol. 48, no. 4, pp. 950-964, 2006. https://doi.org/10.1016/j.corsci.2005.04.006
  19. H. Bohni, T. Suter, and A. Schreyer, "Micro-and nanotechniques to study localized corrosion," Electrochimica Acta, vol. 40, no. 10, pp. 1361-1368, 1995. https://doi.org/10.1016/0013-4686(95)00072-M
  20. S. Park, J. Kim, and J. Yoon, "Effect of W, Mo, and Ti on the corrosion behavior of low-alloy steel in sulfuric acid," Corrosion, vol. 70, no. 2, pp. 196-205, 2013.
  21. Korean Register, Rules for the Classification of Steel Ships, Part 2 Materials and Welding, 2014 (in Korean).
  22. D. N. Veritas, Rules for Classification of Ships/High Speed, Light Craft and Naval Surface Craft, Part 2 Metallic Materials, 2011.
  23. American Bureau of Shipping, Rules for Materials and Welding, Part 2, 2012.
  24. M. Suleiman and R. Newman, "Galvanostatic, creviced stress corrosion test for austenitic stainless steels in hot chloride solutions," Corrosion, vol. 51, no. 3, pp. 171-176, 1995. https://doi.org/10.5006/1.3294358

Cited by

  1. Cavitation-erosion Resistance of Stabilized Stainless Steel with Niobium Addition in Sea Water Environment vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.274