• Title/Summary/Keyword: galvanizing

Search Result 128, Processing Time 0.029 seconds

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

Effects of Ni Addition on the Precipitate Formation and Interfacial Reaction in Hot Dipped Galvanizing Bath (Ni 첨가된 용융아연 도금욕의 석출물과 계면반응)

  • Lee, K. K.;Choi, J.;Cho, K. Z.;Lee, D. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.206-214
    • /
    • 2001
  • The purpose of this study is to determine the effects of Ni on precipitate formation in a Ni added galvanizing bath, which has various Ni content from 0.03wt.% to 0.5wt.%. The addition of hi in the Ni containing galvanizing bath resulted in the formation of Al-Ni intermetallic compounds such as $Al_3$$Ni_2$ and $Al_2$Ni, which make up most of the top precipitates. At 0.07wt.%Ni, Al-Ni intermetallic compound formed sensitively with small amount of Al addition. By analysing the reaction thickness of galvanized steel, it was found that Ni addition in a Zn-0.18w1.%Al bath tended to suppress the formation of Fe-Zn intermetallic compounds but the formation of these compounds increased with increasing Ni concentration above 0.1wt.%.

  • PDF

A Study on the Reference Electrode for Al Concentration Sensor in Zinc Galvanizing Melt (용융아연 도금욕중 Al농도 센서의 기준전극에 대한 연구)

  • Jung, W.G.;Jung, S.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • In order to get basic information on the reference electrode material for the long life Al concentration sensor in zinc galvanizing melt, the workability and stability of fluorine potential cell with $CaF_2$ single crystal electrolyte were examined carefully at constant temperature for six kinds of reference materials (Zn, Sn, Cd, Bi, Pb, Al-Sn alloy + fluorides). Good workability and stability of the sensor were found in sensor with $Bi+BiF_3$ reference electrode. The Al sensor with $Bi+BiF_3$ reference electrode was assembled and was tested in Zn-Al melt with different Al concentration. The EMF was changed rapidly with the change of Al concentration and was stabilized in a short time. Thus the response of EMF was satisfactory for $CaF_2$ sensor. The correlationship between EMF from the sensor and logarithm of Al concentration has been derived from the least square regression method. E/mV=57.515log[wt% Al]+1883.3 R=0.9717 ($0.013{\leq}[wt% Al]{\leq}0.984$) The EMF from Al sensor was increased linearly against logarithm of [wt% Al]. The fluorine potential of Zn-Al melt was also calculated to be in the range of $10^{-60}{\sim}10^{-61}$ Pa for the present experiemental condition.

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

Use of High Zinc Bath Entry Strip Temperature to Solve Coating Problems

  • Sippola, Pertti;Smith, David
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.175-186
    • /
    • 2010
  • The auto industry is demanding more ductile high-strength steel grades to build lighter and stronger car bodies. The hot-dip galvanizing problems of these new steel grades are creating a demand for an improved method to control zinc wettability. The simplest way to improve zinc wettability on industrial hot-dip galvanizing lines is to increase the strip immersion temperature at zinc bath entry for enhancing the aluminothermic reaction. However, this practice increases the reactivity due to overheating the zinc in the snout which induces the formation of brittle Fe-Zn compounds at the strip/coating interface with the formation of higher amounts of dross in the zinc bath and snout contamination. Thus, this simple practice can only be utilized for short production periods of one to two hours without deteriorating coating quality. This problem has been solved by employing a technique that allows the use of a higher and attuned strip immersion temperature at zinc bath entry while still maintaining a constantly low zinc bath temperature. This has been proven to provide the solution for both the improved wettability and a significant reduction in the amounts of dross in the zinc bath.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing (Zn-Flash 코팅 처리가 전기아연도금 시 초고강도 강재의 수소 발생, 유입 및 취화 거동에 미치는 영향)

  • Hye Rin Bang;Sang Heon Kim;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In the present study, effects of a thin Zn-flash coating on hydrogen evolution, infusion, and embrittlement of advanced high strength steel during electro-galvanizing were examined. The electrochemical permeation technique in conjunction with impedance spectroscopy was employed under applied cathodic polarization. Moreover, a slow-strain rate test was conducted to evaluate loss of elongation (i.e., indicative of hydrogen embrittlement (HE)) and examine fracture surfaces. Results showed that the presence of a thin Zn-flash coating, even when it was not distributed uniformly, reduced hydrogen evolution rate and substantially impeded infusion of hydrogen into the steel substrate. This was primarily due to a hydrogen overvoltage on Zn coating and trapping of hydrogen at the interface of Zn coating/flash coating/steel substrate. Consequently, the sample with flash coating had a smaller HE index than the sample without flash coating. These results suggest that a thin Zn-flash coating could be an effective technical strategy for mitigating HE in advanced high-strength steels.