• Title/Summary/Keyword: galaxies: general

Search Result 97, Processing Time 0.023 seconds

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

AN AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERE

  • PARK SEOK JAE
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • In the earlier papers we analyzed the axisymmetric, nonstationary electrodynamics of the central black hole and a surrounding thin accretion disk in an active galactic nucleus. In this paper we analyze the axisymmetric, nonstationary electrodynamics of the black hole magnetosphere in a similar way. In the earlier papers we employed the poloidal component of the plasma velocity which is confined only to the radial direction of the cylindrical coordinate system. In this paper we employ a more general poloidal velocity and get the Grad-Shafranov equation of the force-free magnetosphere of a Kerr black hole. The equation is consistent with the previous ones and is more general in many aspects as it should be. We also show in more general approaches that the angular velocity of the magnetic field lines anchored on the accreting matter tends to become close to that of the black hole at the equatorial zone of the hole.

  • PDF

BATC SURVEY: AUTOMATED PHOTOMETRY AND STRATEGY FOR OBJECT CLASSIFICATION, REDSHIFT, AND VARIABILITY

  • BYUN YONG-IK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.125-126
    • /
    • 1996
  • Beijing-Arizona-Taipei-Connecticut (BATC) survey is a long term project to map the spectral energy distribution of various objects using 15 intermediate band filters and aims to cover about 450 sq degrees of northern sky. The SED information, combined with image structure information, is used to classify objects into several stellar and galaxy categories as well as QSO candidates. In this paper, we present a preliminary setup of robust data reduction procedure recently developed at NCU and also briefly discuss general classification scheme: redshift estimate, and automatic detection of variable objects.

  • PDF

Current Status of Gravitational Wave Research

  • Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.77.1-77.1
    • /
    • 2014
  • Gravitational waves predicted by the general relativity almost 100 years ago have been implicated indirectly only by astrophysical observations such as the orbital evolution of binary pulsars. The advanced detectors of gravitational waves will become operational in a few years and they are expected to make direct detection of gravitational wave signal coming from merging of binaries composed of neutron stars or stellar mass black holes from external galaxies. Korean Gravitational Wave Group (KGWG) is contributing to the possible detection through the data analysis of LIGO and Virgo. We summarize the perspectives of the gravitational wave research and the impacts of the detection in the near future in astronomy and astrophysics.

  • PDF

STUDY OF M82 USING SPECTRA FROM THE INFRARED SPACE OBSERVATORY

  • SOHN JUNGJOO;ANN H. B.;PAK SOOJONG;LEE H. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • We have studied the central parts of M82, which is a well-known infrared luminous, starburst galaxy, by analyzing archival data from the Infrared Space Observatory (ISO). M82 was observed at 11 positions covering $\pm$45" from the center along the major axis. We analyzed 4 emission lines, [ArIII] 8.99 ${\mu}m$, $H_2$ 17.034 ${\mu}m$, [FeII] 25,98 ${\mu}m$, and [SiII] 34,815 ${\mu}m$ from $SWSO_2$ data. The integrated flux distributions of these lines are quite different. The $H_2$ line shows symmetric twin peaks at $\~$18" from the center, which is a general characteristic of molecular lines in starburst or barred galaxies. This line appears to be associated with the rotating molecular ring at around $\~$200 pc just outside the inner spiral arm. The relative depletion of the $H_2$ line at the center may be due to the active star formation activity which dissociates the $H_2$ molecules. The other lines have peaks at the center and the distributions are nearly symmetric. The line profiles are deconvolved assuming that both intrinsic and instrumental profiles are Gaussian. The velocity dispersion outside the core is found to be $\~50 km s^{-1}$. The central velocity dispersion is much higher than $50 km s^{-1}$, and different lines give different values. The large central velocity dispersion ($\sigma$) is mostly due to the rotation, but there is also evidence for a high $\sigma$ for [ArIII] line. We also generated position-velocity maps for these four lines. We found very diverse features from these maps.

  • PDF

SIMULATIONS OF TORUS REVERBERATION MAPPING EXPERIMENTS WITH SPHEREX

  • Kim, Minjin;Jeong, Woong-Seob;Yang, Yujin;Son, Jiwon;Ho, Luis C.;Woo, Jong-Hak;Im, Myungshin;Byun, Woowon
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.37-47
    • /
    • 2021
  • Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of ≤ 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.

STUDY OF ULTRALUMINOUS X-RAY SOURCES IN SOME NEARBY GALAXIES

  • Singha, Akram Chandrajit;Devi, A Senorita
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • We present the results of the spectral and temporal analysis of eight X-ray point sources in five nearby (distance < 20 Mpc) galaxies observed with Chandra. For spectral analysis, an absorbed powerlaw and an absorbed diskblackbody were used as empirical models. Six sources were found to be equally fitted by both the models while two sources were better fitted by the powerlaw model. Based on model parameters, we estimate the X-ray luminosity of these sources in the energy range 0.3 - 10.0 keV, to be of the order of ${\sim}10^{39}ergs\;s^{-1}$ except for one source (X-8) with $L_X>10^{40}ergs\;s^{-1}$. Five of these maybe classified as Ultraluminous X-ray sources (ULXs) with powerlaw photon index within the range, ${\Gamma}{\sim}1.63-2.63$ while the inner disk temperature, kT ~ 0.68 - 1.93 keV, when fitted with the disk blackbody model. The black hole masses harboured by the X-ray point sources were estimated using the disk blackbody model to be in the stellar mass range, however, the black hole mass of one source (X-6) lies within the range $68.37M_{\odot}{\leq}M_{BH}{\leq}176.32M_{\odot}$, which at the upper limit comes under the Intermediate mass black hole range. But if the emission is considered to be beamed by a factor ~ 5, the black hole mass reduces to ${\sim}75M_{\odot}$. The timing analysis of these sources does not show the presence of any short term variations in the kiloseconds timescales.

Large Scale Distribution of Globular Clusters in the Coma Cluster

  • O, Seong-A;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.3-42
    • /
    • 2021
  • Coma cluster (Abell 1656) is one of the most massive local galaxy clusters such as Virgo, Fornax, and Perseus, which holds a large collection of globular clusters. Globular cluster systems (GCSs) in a galaxy cluster tell us a history of hierarchical cluster assembly and intracluster GCs (ICGCs) are known to trace the gravitational potential of the galaxy cluster. Previous studies of GCSs in Coma mainly utilized data obtained using Hubble Space Telescope (HST) with high spatial resolution. However, most of the data were based on narrow-field pointing observations. In this study we present the widest survey of GCSs in the Coma cluster using the archival Subaru/Hyper Suprime-Cam (HSC) g and r images, supplemented with the archival HST images. The Coma GCSs are largely extended in E-W and SW direction, along the general direction of Coma-Abell 1367 filament. This global structure of the GCSs is consistent with the spatial distribution of the intracluster light (ICL). ICGC spatial distribution is largely extended to almost ~50% of the virial radius. Most of these ICGCs are blue and metal-poor, which supports the scenario that ICGCs are mainly originated from dwarf galaxies and some proportion from brighter galaxies. Implications of the results will be discussed.

  • PDF

Cosmology with peculiar velocity surveys

  • Qin, Fei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.5-44
    • /
    • 2021
  • In the local Universe, the gravitational effects of mass density fluctuations exert perturbations on galaxies' redshifts on top of Hubble's Law, called 'peculiar velocities'. These peculiar velocities provide an excellent way to test the cosmological model in the nearby Universe. In this talk, we present new cosmological constraints using peculiar velocities measured with the 2MASS Tully-Fisher survey (2MTF), 6dFGS peculiar-velocity survey (6dFGSv), the Cosmicflows-3 and Cosmicflows-4TF compilation. Firstly, the dipole and the quadrupole of the peculiar velocity field, commonly named 'bulk flow' and 'shear' respectively, enable us to test whether our cosmological model accurately describes the motion of galaxies in the nearby Universe. We develop and use a new estimators that accurately preserves the error distribution of the measurements to measure these moments. In all cases, our results are consistent with the predictions of the Λ cold dark matter model. Additionally, measurements of the growth rate of structure, fσ8 in the low-redshift Universe allow us to test different gravitational models. We developed a new estimator of the "momentum" (density weighted peculiar velocity) power spectrum and use joint measurements of the galaxy density and momentum power spectra to place new constraints on the growth rate of structure from the combined 2MTF and 6dFGSv data. We recover a constraint of fσ8=0.404+0.082-0.081 at an effective redshift zeff=0.03. This measurement is also fully consistent with the expectations of General Relativity and the Λ Cold Dark Matter cosmological model.

  • PDF

KVNCS: 2. The Fringe Survey of New Candidates for VLBI Calibrators in the K Band

  • Jeong Ae Lee;Taehyun Jung;Bong Won Sohn;Do-Young Byun
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • The main goal of the Korean VLBI Network Calibrator Survey (KVNCS) is to expand the VLBI calibrators catalog for KVN, KaVA (KVN and VERA Array), EAVN (East-Asian VLBI Network), and other extended regions. The second KVNCS (KVNCS2) aimed to detect VLBI fringes of new candidates for calibrators in the K band. Out of the 1533 sources whose single-dish flux density in the K band was measured with KVN telescopes (Lee et al. 2017), 556 sources were observed with KVN in the K band. KVNCS2 confirmed the detection of VLBI fringes of 424 calibrator candidates over a single baseline. All detected sources had a high Signal-to-Noise Ratio (SNR) of >25. Finally, KVNCS2 confirmed 347 new candidates as VLBI calibrators in the K band, resulting in a 5% increase in the sky coverage compared to previous studies. The spatial distribution was quasi-uniform across the observable region (Dec. > -32.5°). In addition, the possibility as calibrator candidates for the detected sources was checked, using an analysis of the flux-flux relationship. Ultimately, the KVNCS catalog will not only become the VLBI calibrator list but is also useful as a database of compact radio sources for astronomical studies.