JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY
33: 19 ~ 28, 2000

AN AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERE

SEOK JAE PARK
Korea Astronomy Observatory, 61-1, Whaam-Dong, Yusong-Gu, Taejon 305-348, Korea

E-mail: sjpark@kao.re.kr
(Received May 12, 2000; Accepted Jun. 5, 2000)

ABSTRACT

In the earlier papers we analyzed the axisymmetric, nonstationary electrodynamics of
the central black hole and a surrounding thin accretion disk in an active galactic nucleus.
In this paper we analyze the axisymmetric, nonstationary electrodynamics of the black hole
magnetosphere in a similar way. In the earlier papers we employed the poloidal component of
the plasma velocity which is confined only to the radial direction of the cylindrical coordinate
system. In this paper we employ a more general poloidal velocity and get the Grad-Shafranov
equation of the force-free magnetosphere of a Kerr black hole. The equation is consistent
with the previous ones and is more general in many aspects as it should be. We also show in
more general approaches that the angular velocity of the magnetic field lines anchored on the
accreting matter tends to become close to that of the black hole at the equatorial zone of the
hole.
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I. INTRODUCTION

Most astrophysicists believe that central engines in active galactic nuclei are related to supermassive black holes.
An axisymmetric, stationary electrodynamic engine model was well formulated by Macdonald and Thorne (1982,
hereafter MT), which consists of the supermassive black hole surrounded by a magnetized accretion disk.

The magnetosphere of the MT model can be divided into three regions (E, B, pe, and j have their usual definitions
in electrodynamics):

1) degenerate region; the event horizon of the black hole and the surface of the magnetized accretion disk are

degenerate,
E-B=0. (1.1a)

2) force-free region; the zones closest to the black hole are force-free,
E-B=0 and p.E+jxB=0. (1.1b)

3)acceleration region; the zones farther from the black hole are called the acceleration region.

These regions must be filled by highly conducting plasma and in the force-free region, in particular, the equations
of magnetohydrodynamics will be well satisfied because condition (1.15) guarantees infinite conductivity of plasma.

Based on this model we have investigated an axisymmetric, nonstationary model of the central engine of an
active galactic nucleus. In the earlier papers (Park and Vishniac 1989a, paper I; Park and Vishniac 1989b, paper
II) we investigated the electrodynamics of a black hole and an accretion disk.

In paper I we derived all the fundamental equations in a fully time-dependent manner and investigated the
electrodynamics of a black hole. Under the assumption that the mass accretion is confined to the equatorial plane
of the black hole our results suggested that, at the equatorial zone of the hole, the angular velocity of the magnetic
field lines anchored on the accreting matter must be close to that of the black hole.

In paper II we analyzed the axisymmetric, nonstationary electrodynamics of a surrounding magnetized accretion
disk. We found that the power output due to the Blandford-Znajek process can be variable even on short time
scales. This may explain the observed short time scale variability of active galactic nuclei.
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MT employed the plasma velocity which had only the toroidal component simply because their goal was to
establish an axisymmetric, stationary model. This is the reason why the stream equation of the MT model (MT,
eq. [6.4]) is too simple to describe astrophysical poloidal phenomena like electrodynamic jets. In paper I and
paper II we employed the poloidal component of the plasma which is confined only to the radial direction of the
cylindrical coordinate system. If we consider a black hole and the surrounding thin accretion disk only, this is not
a bad approach at all, but this cannot fully describe poloidal phenomena, either.

In this paper we analyze the force-free black hole magnetosphere and we employ the poloidal component of the
plasma which is not necessarily confined only to the radial direction of the cylindrical coordinate system. We will,
therefore, get some more general results which must be related to some poloidal phenomena.

Following paper I and paper II we will summarize the equations of axisymmetric, nonstationary electrodynamics
in Section II. The force-free condition will be introduced in Section III. Finally, in Section IV, we will derive the
Grad-Shfranov equation of the force-free magnetosphere of a Kerr black hole and the power output equation.

Throughout this paper we define our units such that ¢ = G = 1, and the central black hole is assumed to be a
Kerr black hole which possesses the total mass M, the angular momentum J, and the angular momentum per unit
mass a(= J/M).

II. AXISYMMETRIC, NONSTATIONARY ELECTRODYNAMICS

In this section we will describe the electrodynamics of an axisymmetric, nonstationary accretion disk. Axisym-
metric, nonstationary conditions can be represented as (paper I, eq. [3.1]; paper II, eq. [2.1}),

m-Vf=0, Lnf=0 (2.1a)
and

of _ . of .

5 =1#0, 5 =f#0, (2.1b)

where m is a Killing vector of the axisymmety, £ means the Lie derivative, and f and f are any scalar and vector,
respectively.

To describe the spherically symmetric spacetime we use the spherical coordinate system (r,8,y) whose unit
vectors are expressed as e;, e;, and ey, respectively (e; X e; = e;). We also use the cylindrical coordinate system
(R, p, z) with the unit vectors ey, e;, and e; (eg X e; = e;) to describe the axisymmetry of the magnetosphere.

Throughout this paper m has the same magnitude as @, the separation between the symmetric axis of the black
hole and a Zero-Augular-Momentum-Observer (ZAMO; see MT)

W= z sin d, (2.2a)
P
where

p>=r*+a*cos’ (2.2b)

and
52 = (r? + a?)’ - a®Asin? 0, (2.2¢)

with
A=7’4a>-2Mr. (2.2d)

(a) Outside the Horizon

Let A be an m-loop, A be any surface bounded by dA but not intersecting the event horizon of the black hole,
and dX be the normal vector on an infinitesimal area on A. Then we can define the total electric current passing
downward through A, I(t,x), the total magnetic flux passing upward through A, ¥ (¢, x), and the total electric flux
passing upward through A, ®(t,x), as (paper I, eq. [3.2]; paper II, eq. [2.3]),

I(t,x) = - /A oj - dx, (2.3a)
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T(t,x) = /AB-dE, (2.3b)
and
®(t,x) = /AE -dX, (2.3¢)
where a is the lapse function of the ZAMO. The value of a is given by
a= -g\/_A— (2.4)

In terms of these the electromagnetic fields described by the ZAMO are given by (paper I, egs. [3.3], [3.5], and
[3.6]; paper II, eq. [2.5]),

2 (¥
ET = % (E) €y, (2.5a)
Ef =E - ET, (2.5b)
2 &
BT = _Zy_(:) (I — ZT?) €5, : (2.5¢)
and
e; x VU

where T', P denote the toroidal and poloidal components respectively.
Let S; and Sg be the Poynting vector of the angular momentum flow and the energy flow, respectively. In this
case they are given by (paper I, eq. [3.7]; paper 11, eq. [2.6]),

sk = ﬁ { (I— %) BY + <4%> EP} (2.6a)

and o
st = E(E x B)Y +ws?, (2.6b)
where w is the ZAMO’s angular velocity,
_ 2aMr
w = 22 (260)

If we fix the observer as the ZAMO at the given point around a Kerr black hole, Maxwell equations satisfy the
condition (2.1) are given by (paper I, eq. [2.9]),

V- E = 47p., (2.7a)
V-B =0, (2.7b)
V x (aE) = —[B - (B - Vw)m)], (2.7¢)
and
V x (aB) = E — (E - Vw)m + 47aj. (2.7d)

{b) Boundary Conditions at the Horizon

The event horizon exists where « = 0, i.e., A = 0in (2.4). Here e;, the unit vector of the poloidal (from the north
pole toward the equator) direction, and ey form the local orthonormal frame with the unit vector perpendicular to
the horizon, n as e5 x e; = n. In black hole electrodynamics the horizon behaves as if endowed with surface chatge
o | electric current j¥, resistance R, electric field E¥ | magnetic field BY, (Hawking) temperature T | entropy
SH  and so on. At the horizon, the electromagnetic fields must satisfy (paper I, eq. [2.10]),

E-n(=E,) - 4noll, (2.8a)
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aB) - B¥ = 47j% x n, (2.8b)
aE; —+ E¥ = RHjH = 4zt (2.8¢)

and
Ef =n x B, (2.8d)

where 1, || mean perpendicular, parallel to the horizon, respectively.
At the horizon, we also have
a—=0, w0 (2.9)

where 0 is the angular velocity of the black hole. From equations (2.5¢), (2.5d), (2.8b), and (2.9), we get (paper
I, eq. [3.9])

2 b 1
H_ =2 - f — . .
B = > (I 47r) ey 27T‘:J(an Vi¥e;, (2.10)
where the second term does not vanish for @ — 0 in this case. We also have (paper 1, eq. [3.10])
1
B n(=B,)= CPAD) -V, (2.11a)
2 $ 1
H = — — — A —— - -
EY = z <I 4#) e\ T 5.5 (an-V¥)e,, (2.11b)
and .
112 ® 1
H
=—|=|T-—)e —— . 5] - :
Jj i [Q ( 47r) e\~ 5.5 (an V\P)ew] (2.11¢)

Using equations (2.8a), (2.11b), and (2.11c), we get the torque per unit area, entropy increase by Joule heating,
and the flux of redshifted energy (paper I, eq. [3.11])

Aj._ . B_L ‘I’ E_L
—aSy;-n— Ay ——g (I— E) - 8?(01’1' V‘I’), (212&)
ASH 1 8\ 1
H=Y _ _x = X 2
=%~ — [(1 4W> + 155 (an - V) J (2.12b)
and
caSpomy AM_(_ APN 1 (. @)1 /[ @) 0FB
aF A \~ A%/ T x ir | |32 4r 2
+- L (on-VO) [—(an- V) - 207 E (2.12¢)
477 dm? ok e

where AY is the area of the tube at the horizon, J_ and M_ are the rate of the angular momentum loss and the
mass loss of the black hole, respectively (see figure 1 in Park and Vishniac 1988), and P is the power output due to
the mass extraction.

I1I. FORCE-FREE MAGNETOSPHERE
As mentioned in the introduction MT employed the plasma velocity (MT, eq. [5.2] and [5.3]),

_QOF
vF=_Y aQ m, (3.1a)

which has only the toroidal component and satisfies the relation

Ef = —(vF) x BP, (3.1b)
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where QF is the angular velocity of the magnetic field lines. Notice that the field lines are anchored on the conducting
plasma and they are assumed to move together.
In paper I and paper II we defined the velocity as (paper I, eq. [4.2])

F

vF =% ﬁa m + v(t,X)insep, (3.2a)
such that
Ef = —(vF)T x B — (vF)P x BT 4 (3.2b)
and
ET = —(vF)P x BF, (3.2¢)

where vin is the radial-infall velocity of the magnetic field lines.
In this paper we consider v (without the suffix F)

- QF
v=-% m + v, (3.3a)
a
such that
Ef = —vT x B —vF x BT (3.3b)
and
ET = —vF x BP. (3.3¢)

Notice here that v¥ is not confined only to the radial direction of the cylindrical coordinate system.

(a) Outside the Horizon

Now, from equations (3.3a) and (3.3b), we get the poloidal component of the electric field (see paper I, eq. [4.3]),

p_w—0F 2 )\ ,
E" = men V‘I"f‘a-(f)g (I— E v X1m, (34)

which was not specified in equation (2.5b).
(From equation (3.3c), we get the toroidal component of the electric field

1
BN = o (7 V)m, (3.50)

which, setting equal to equation (2.5a), gives a useful relation such that
avl Vo = ¥, (3.5b)

Substituting equations (3.4) and (3.5a) into equations (2.6a) and (2.6b), we get

1 d 1 (O w—0F 2 o
P LI I BP - el s = P .
S 2Tar ( 47r> + 2o \ 4w 27 v+ a®? I 47 voxme, » (3.6a)

. L\ 2
OF i3 1 i)
P P P
= (1-= _2
Sk 2ra ( 471') B™ + Tow? (I 47r> v

w (@ w-0F 2 ¢\ p o _p
+2‘E<E>{ 2 W’*w(“z;)“ xmo+ oBlxm (3.60)

and
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The time-component of the 4-vector potential (Ag, A) is given by (paper I, eq. {3.4])
VAo =aE+A — é“iﬂw. (3.70)

Substituting equations (3.4) and (3.5a) in equation (3.7a), we get

oF 2 (¥ 2 )\ p :
VAo——ﬁv\I’—E(Z;>m+E§<I—%>V xm+ A. (37b)
i From equation (2.7d) we have
tri= 1V x(@B) - 1B+ 1(E. vu)m (3.80)
1= 3 a a ’ o

and, substituting equations (2.5¢), (2.5d), and (3.7a) into equation (3.8a), we get

47ro =A47j - 2
W
=2 v (2vE)+ 2 Voo (-0 4 2 (1= 2) v vP xm
210 w2 2ma? o’ 4m
2 (¥ @ .1
g (:E) Vw-m+ va -A - a—&E -m. (3.8b)

(From equations (2.7a) and (3.4) we also have

-0F 2 ¢
47Tpe=V'EP:V'{w2ﬂ_a V\IJ+E&)—2<I———>vpxm}. (3.9)

ar

(b) Boundary Conditions at the Horizon
(From equations (2.5a), (2.8¢}, (2.9), and (3.4), we get

2 (¥ e 2 $
EHZ—‘B (ZTT‘) e¢+{Te5\'qu—5 (I—E>n-vP}e5‘, (3.10)

which must be equal to equation (2.11b). Therefore, we get,
an-V¥ = ¥, (3.11a)

and (see MT, eq. [5.10]),

-——=— __’B A1b
4 2(1+n-vp)w L (3.110)

where equation (2.11a) was also used. Equations (3.10) and (3.11) are more general forms of paper I equations (4.7)
and (4.8).
Equation (3.11a) enables us to write equations (2.10) and (2.11b) as,

(3.12a)

2 (¥ 2 P

[os]
]
|
|
€ o
TN
—
|
B
5
N~
o)
€
|
€ ro
TN
e
——
™
>

and
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Therefore, Eff and B have rotated by the angle x (see figure 1 of paper D),

W /4m

m. (3.13)

X = arctan

Equations (3.12) and (3.13) have not been changed from paper I equations (4.9) and (4.10).
In paper I we assumed that a small fraction of the field lines can still penetrate the strong field region anchored
on the accreting matter, and employed the boundary condition (paper I, eq. [4.6]),

Vinf —* —5, (314)

where-§ = 1 at 8 ~ 7/2, and 0, otherwise. Condition (3.14) meant that, if possible, the field lines can penetrate
the strong field region only through the equatorial plane and that they will do so by being dragged by freely falling

matter.
In a sense condition (3.14) was too artificial and confined naturally to the equatorial plane of the black hole. In
this paper we introduce a much more general condition

n-vP o -1, ' (3.15)

which is natural because everything near the horizon will freely fall toward the hole with speed close to that of
light. Moreover, equation (3.5b) and (3.11a) strongly imply that the condition (3.15) is satisfied.
With condition (3.15), equation (2.12) becomes,

Aj_ QH - QF ~ 2 E_j_ \I’
_aSJ-n—-) A = _477'(1+II'VP)(WBL) '—g E s (3160,)
. s

AsH _(oF —aF)? 1 (@

H - 2 R
T AY - 47(l+n-vF)? (@BL)" + ro \dn | (3.16b)

and ‘ ., i . )
——AM_ = AP — Q7 -Q - 2 H Qf —Q
eSE R s (_ AE) B 47r(1+n-vP)(WBJ‘) (Q 1+n.vp)

() (2)- )

which, again, are more general forms of paper I equations (4.11) and (4.12). Notice that if condition (3.15) holds,
the denominators in equation (3.16) become 0, which strongly requires that '

Qf 5 of (3.17)

for all the variables to be finite.
Naturally, if vF = 0 and all the time-derivative terms set to be equal to 0, all the equations become identical

with MT equations (MT, egs. [5.12], [5.13], and [5.14]),
A of-qFf

_ . — n 2
aS;-n— A yp (@B,)*, (3.18a)

ASH (QH _ QF)2

H ~ 2

T =% = T (@B.), (3.18b)
and

(3.18¢)

oSy on oy AN <E AP) _orAJ

AY TAY ) T AT
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IV. CONCLUSIONS

In this section we will derive the Grad-Shfranov equation of the force-free magnetosphere of a Kerr black hole
and the power output equation.

(a) The Grad-Shafranov Equation

As mentioned in paper I, we cannot get a time-dependent ‘stream’ equation because all the variables are not
functions of ¥ only. In this case, for example, the relation like

B .vQf =0 (4.1)

cannot be satisfied and the Ferraro’s law of isorotation breaks down. The magnetic field lines, therefore, will be
twisted and wound up in the magnetosphere and form jets in a much more complicated way. We, therefore, analyze
a quasi-stationary axisymmetric magnetosphere in this subsection.

The definitions, VI = —2rm x (ajf) and V¥ = 2rm x BF have never been altered and the relation (MT, eq.

[6'2])’

1 dl

sP P

=-——B 2
J ad¥ (42)

is still valid in this paper. Here we assume
vl ~ kBf (4.3)

as in Lovelace et al. (1986) and Zhang(1989). Equation (4.3) means that we set ET ~ 0 in equation (3.3¢) in
our quasi-stationary approach. Notice again that the field lines are anchored on the conducting plasma and move
together in this paper.
Then, from equations (1.1b), (3.3b), (4.2), and (4.3), we have

) 1dI

iT = pev? — Ed_\IlBT — p.kBT. (4.4)
Substituting equations (3.8b), (3.9), and (4.3) into equation (4.4) and setting time-derivative terms to be equal to
zero, we finally reach at

a 02G? G 16721 dI
V{Eg(l— o2 )V‘I’}+EV(G_w)V‘I’+Wd—‘IJ—O’ (450,)
where o]
— F K

The specific derivation of equation (4.5) is summarized in Park(1999).

Equation (4.5) is the Grad-Shafranov equation in this case. It is a useful, true stream equation of the force-free
magnetosphere and describes the fully-relativistic electrodynamics of a quasi-stationary, axisymmetric magneto-
sphere around a Kerr black hole. The general form of equation (4.5) was obtained by Nitta et al. (1991) for the first
time in the 4-dimensional spacetime formulation. Notice, however, that our equation is in a more familiar form in
the 3+1-spacetime formulation. The general form of equation (4.5) in the 3+1-spacetime formulation can be found
in Beskin and Okamoto (2000) and references therein.

For the magnetosphere of a Schwarzschild black hole, we have w — 0 and equation (4.5) becomes

o W*G? G 16721 dI
v {1 ) v ave v g =0 (462

where -
G=-0F - & (4.6b)

@2
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In the weak field limit, we have @ = 1, @ = R, and w — 0, and equation (4.5) becomes

1 2 16721 dI
where o]
K
G=-0f - T (4.7b)
Equation (4.7) can be transformed into
1 dH
O R2ANDARY 442y e
(1-R*G*)A*¥ Qsz(R G*) V\Il+HdlIl 0, (4.8a)
where 5 5 52
et 100 v
AT = R@ (Eﬁ) + 522 (4.8b)
and )
H = RB". (4.8¢)

Equation (4.8) is nothing other than Lovelace et al. (1986) equation (87).
Substituting '
G=w-9aF (4.9)

into equation (4.5a), we naturally can get the original MT stream equation (MT, eq. [6.4]),

e (w—QF)252 w—QF dQF o 16720 dl
VoG - ] - S e R (4.10)

which was solved numerically by Macdonald(1984).

(b) The Power-Output Equation

Now we return to our axisymmetric, nonstationary model. Another result of this paper is related to the power
output through the Blandford-Znajek process (Blandford and Znajek 1977). Consider again an annular tube
intersecting the black hole (region A in figure 1 in Park and Vishniac 1988). Let the magnetic flux and the electric
flux at the horizon be A¥ and A®, respectively. ;From equation (3.16¢), we get

Qf _F -9 g QF_qQF
AP_47r(1-|—n-vp)wBJJMI’(Q _1+n-vp)
. L\ 2

AP AP AY [ AT

H — —— —_—— —
v (82) (8533 ()’ o

Notice that the condition

of ~ 0f (4.12)

is necessary again as in paper I for the total power output generated by equation (4.11) to be finite. Equation (3.15)
also suggests condition (4.12) to be satisfied, at least, at the event horizon of the central black hole.

Naturally and again, if v’ = 0 and all the time-derivative terms set to be equal to 0, equation (4.11) becomes
identical with (MT, eq. [7.2]),
QF QH _ QF
——(E—)JFBLA‘II, (4.13)

AP =

which is maximized for )
QF ~ 59*’. (4.14)



28 PARK

Condition (4.14) seems less realistic than condition (4.12) because, in the case of a Kerr black hole, near and
inside the ergosphere the dragging of inertial frames will swing the infalling gas into orbital rotation about the hole.
As the accreting matter approaches the horizon, OF must approach Q naturally (see Novikov and Thorne 1973).

The author thanks Ethan Vishniac and Roger Blandford for helpful discussions. This work has been supported
in part by the Project 2000-1-200-01 of Korea Astronomy Observatory.

REFERENCES

Beskin, V. S., & Okamoto, I. 2000, MNRAS, 313, 445

Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433

Lovelace, R. V. E., Mehanian, C., Mobarry, C. M., & Sulkanen, M. E. 1986, ApJ, 62, 1
Macdonald, D. A. 1984, MNRAS, 211, 313

Macdonald, D. A., & Thorne, K. S. 1982, MNRAS, 198, 345 (MT)

Nitta, S., Takahashi, M., & Tomimatsu, A. 1991, Phys. Rev., D44, 2295

Novikov, I. D., & Thorne, K. S. 1973, in Black Holes, ed. DeWitt, C., & B. DeWitt, (New York: Gordon and Beach), 343
Park, S. J. 1999, Pub. Korean Astro. Soc., 14, 57

Park, S. J., & Vishniac, E. T. 1988, AplJ, 332, 135

Park, S. J., & Vishniac, E. T. 1989a, ApJ, 337, 78 (paper I)

Park, S. J., & Vishniac, E. T. 1989b, ApJ, 347, 684 (paper II)

Zhang, X.-H. 1989, Phys. Rev., D39, 2933



