• Title/Summary/Keyword: gain imbalance

Search Result 59, Processing Time 0.028 seconds

Additional Diversity Gain in OFDM Systems under the Influence of IQ Imbalances (IQ 불균형에 의하여 왜곡된 OFDM 시스템에서의 다이버시티 이득 획득 기법)

  • Jin, Young-Hwan;Kwon, Ji-Hyeon;Lee, Yu-Ro;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1205-1213
    • /
    • 2006
  • In this paper, we analyze the IQ(In-phase/Quadrature) imbalance effects at both transmitter and receiver side of OFDM(Orthogonal Frequency Division Multiplexing) and show that IQ imbalance is the parameter to improve the performance using ML and OSIC scheme. Especially, we can archive the diversity gain due to the IQ imbalance in multipath fading environment. In addition, new preamble format is proposed, which enable estimation of the channel and IQ imbalance parameters to maximize the diversity gain. Significant performance improvement is achieved by using the ML(Maximum Likelihood)and OSIC(Ordered Successive Interference Cancellation) with compensation compared to a standard receiver with no compensation for IQ imbalance and proposed channel estimation scheme achieves the better performance improvement than conventional.

A Novel Modeling and Performance Analysis of Imperfect Quadrature Modulator in RF Transmitter

  • Park, Yong-Kuk;Kim, Hyeong-Seok;Lee, Ki-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.570-575
    • /
    • 2012
  • In a wireless communication RF transmitter, the output of a quadrature modulator (QM) is distorted by not only the linear imperfection features such as in/quadrature-phase (I/Q) input gain imbalance, local phase imbalance, and local gain imbalance but also the nonlinear imperfection features such as direct current (DC) offset and mixer nonlinearity related to in-band spurious signal. In this paper, we propose the unified QM model to analyze the combined effects of the linear and nonlinear imperfection features on the performance of the QM. The unified QM model consists of two identical nonlinear systems and modified I/Q inputs based on the two-port nonlinear mixer model. The unified QM model shows that the output signals can be expressed by mixer circuit parameters such as intercept point and gain as well as the imperfection features. The proposed approach is validated by not only simulation but also measurement.

A Study on the gain and phase matching between channels in the Monopulse Receiver (모노펄스 수신기의 채널간 정합에 관한 연구)

  • 공덕규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • In this paper, the monopulse channel receiver which can be matched between channels through a wide bandwidth has been proposed. The effects of the gain and phase imbalance between channels on the slope of monopulse error signal were analyzed. Also, the matching method between channels in a wide bandwidth was proposed, by which monopulse slope could be stabilized. Using the implemented monopulse radar system the monopulse slope was measured in the anechoic chamber which include the moving horn antenna and the target signal generator. The results show that the wide band matching method is useful and applicable to various channel receivers

  • PDF

Joint Scheme of IQ Imbalance Compensation and AGC for Optimal DFE in M-WiMAX Mobile Modem (M-WiMAX 시스템의 DFE 최적화를 위한 IQ 불균형 보상과 AGC 결합 기법)

  • Kim, Jong-Hun;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.341-346
    • /
    • 2009
  • M-WiMAX (Mobile-Worldwide Interoperability for Microwave Access) system, which uses OFDM (Orthogonal Frequency Division Multiplexing) technique, is known to be proper for mobile high-speed data transmission system. Nevertheless, M-WiMAX is seriously sensitive to IQ imbalance caused by the LO (Local Oscillator) at the receiver. In this paper, we analyze the effect of IQ imbalance on the system, and then propose a joint optimization scheme that can optimize DFE (Digital Front-end) of mobile modem by combining operation duplicated between AGC (Automatic Gain Control) and the estimation and compensation of IQ imbalance. Simulation results show that the proposed scheme achieves the same performance of the conventional scheme while reducing the complexity of the H/W implementation.

Compensation characteristics of channel imbalance in quadrature modulator and demodulator (직교 변.복조기의 채널불균형 보정특성)

  • 정창규;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2055-2062
    • /
    • 1996
  • This paper presents a method of compensating for the gain and phase imbalance of quadrature modulator and demodulator. The gain and phase imbalance are compensated using the received power after the compensation pattern was transmitted at tranceiver. The proposed method is less vulnerable to changes in the transmission channel than the conventional method because compensation is made possible within the tranceiver system, and even the change in phase mblance in accordance with frequency can be compensated utilizing the adaptive algorithm. According to numerical results, a normalized eye opening and a bit error rate are improved by 1.8dB and 3.8dB, respectively.

  • PDF

Current-Steered Active Balun with Phase Correction

  • Park, Ji An;Jin, Ho Jeong;Cho, Choon Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.629-633
    • /
    • 2015
  • An active balun using current steering for phase correction is presented. The proposed active balun is constructed with two different unit balun structures based on current steering to reduce phase and amplitude errors. This type of topology can be compared with the conventional phase and amplitude correction techniques which do not incorporate the current steering. Designed and fabricated active balun in $0.18{\mu}m$ CMOS process operates over 0.95 - 1.45 GHz band, showing input reflection coefficient under -15 dB, phase error of $11^{\circ}$ and gain error of 0.5 dB. Gain is measured to be 0.3 dB maximum and power consumption of 7.2 mW is measured.

I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver (가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘)

  • 송윤정;나성웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1104-1111
    • /
    • 2003
  • The paper presents an algorithm for the compensation of gain and phase imbalances to exist between I-phase and Q-phase signal at direct conversion receiver. We propose a gain and phase imbalances blind equalization compensation algorithm by using variable step-size adaptive loop at direct conversion receiver. The blind equalization schemes have trade-off between convergence speed and jitter effect for the compensation of gain and phase imbalance. We propose the variable step-size adaptive loop method, which varies the loop coefficients according to errors, for recovering these problem. By using variable step-size adaptive loops, we propose to speed up the convergence process and reduce the jitter effect and simulation results show that the algorithm compensates signal loss and speeds up convergence time.

IQ Unbalance Compensation for OPDM Based Wireless LANs (무선랜 시스템에서의 IQ 부정합 보상 기법 연구)

  • Kim, Ji-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.905-912
    • /
    • 2007
  • This paper proposes an efficient estimation and compensation scheme of IQ imbalance for OFDM-based WLAN systems in the presence of symbol timing error. Since the conventional scheme assumes perfect time synchronization, the criterion of the scheme used to derive the estimation of IQ imbalance is inadequate in the presence of the symbol timing error and the system performance is seriously degraded. New criterion and compensation scheme considering the effect of symbol timing error are proposed. With the proposed scheme, the IQ imbalance can be almost perfectly eliminated in the presence of symbol timing error. The bit error rate performance of the proposed scheme is evaluated by the simulation. In case of 54 Mbps transmission mode in IEEE 802.11a system, the proposed scheme achieves a SNR gain of 4.3dB at $BER=2{\cdot}10^{-3}$. The proposed compensation algorithm of IQ imbalance is implemented using Verilog HDL and verified. The proposed IQ imbalance compensator is composed of 74K logic gates and 6K bits memory from the synthesis result using 0.18um CMOS technology.

A Novel Method for Rejection of the Spurious Signal in Weaver-Type Up-Conversion Mixer (위버구조 상향변환 혼합기의 스퓨리어스 신호 제거 방법)

  • 김영완;송윤정;김유신;이창석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.661-668
    • /
    • 2004
  • A novel method to reject the spurious signals which are occurred at Weaver-type low-IF transmitter was proposed in this paper. The spurious signals are generated by the gain and phase imbalances of I/Q channel or imperfect characteristics of 90$^{\circ}$ phase shifter in local oscillator for I/Q channel source. By deriving the gain and phase-based functions from RF spurious signal with the channel imbalance information, the lie channel imbalances were deduced as functions with magnitude and sign dependent on I/Q channel imbalance degree. The proposed method compensates the estimated I/Q channel imbalances by correlation values between the down-converted signal obtained by squaring the output signal itself using a simple mixer and the modified baseband signal. By comparing two signals after A/D conversion, the magnitude and sign of each type of imbalances can be determined separately and simultaneously. Based on the I/Q channel imbalance compensation, the spurious signals can be reduced by adjusting the gain and phase values of I or Q channel signal. The way to estimate the channel imbalances of the up-conversion mixer was presented and verified by using theoretical derivations and computer simulations.

A Study on Error Compensation for Quadrature Modulator in Frequency Direct Conversion Method (주파수 직접변환방식의 직교변조부 에러보정에 관한 연구)

  • 백주기;이일규;방성일;진년강
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.542-551
    • /
    • 1998
  • In this study, a method of error compensation for channel gain imbalance, phase imbalance and local oscillator leakage in the modulator of frequency direct conversion is suggested. The compensation of channel imbalance can be carried out by using the received power after transmitting test signal. By applying this method, the phase imbalance conversion with frequency can be easily compensated since this method is rarely affected by the transmission channel. It is confirmed that the algorithm proposed in this study(iteration coefficient=11) converges faster than conventional algorithm(iteration coefficient=43). From the numerical results, the DC-offset, channel gain, phase imbalance compensation coefficient and iteration number converges into($f_1$=0.0199999, $f_2$=-0.050001, $C_{22}$=0.9133, $C_{12}$=-0.0524, N=13) when the local oscillator leakage is not considered. However, it converges into($f_1$=-0.02, $f_2$=-2.2476, $C_{22}$=0.9133, $C_{12}$=-0.0524, N=16) when the local oscillator leakage is considered.

  • PDF