• 제목/요약/키워드: g-circulant matrix

검색결과 6건 처리시간 0.019초

ON THE g-CIRCULANT MATRICES

  • Bahsi, Mustafa;Solak, Suleyman
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.695-704
    • /
    • 2018
  • In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.

A RECURSIVE ALGORITHM TO INVERT MULTIBLOCK CIRCULANT MATRICES

  • Baker, J.;Hiergeist, F.;Trapp, G.
    • Kyungpook Mathematical Journal
    • /
    • 제28권1호
    • /
    • pp.45-50
    • /
    • 1988
  • Circulant and multiblock circulant matrices have many important applications, and therefore their inverses are of considerable interest. A simple recursive algorithm is presented to compute the inverse of a multiblock circulant matrix. The algorithm only uses complex variables, roots of unity and normal matrix/vector operations.

  • PDF

ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES

  • Dokuzova, Iva
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1441-1456
    • /
    • 2017
  • We consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^3=id$. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We introduce three classes of such manifolds. Two of them are determined by special properties of the curvature tensor. The third class is composed by manifolds whose structure q is parallel with respect to the Levi-Civita connection of g. We obtain some curvature properties of these manifolds (M, g, q) and give some explicit examples of such manifolds.

블록순환 행렬에 의한 이중나선 DNA 구조 (II) (A Double Helix DNA Structure Based on Block Circulant Matrix (II))

  • 박주용;김정수;이문호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.229-233
    • /
    • 2016
  • 본 논문에서는 4개의 유전자 핵염기 C, U(T), A, G를 행렬로 표시하고, $4{\times}4$ RNA(ribose nucleic acid)에서 $8{\times}8$ DNA(deoxyribose nucleic acid)로의 행렬 구조에 대해 서술한다. BCHJM (block circulant Hadamard-Jacket matrix)에 의해 DNA 이중나선 구조(double helix)를 해석한다. 직교 BCHJM은 비대칭 쌍 상보성(complementary)을 보이고 있다. 블록순환(block circulant) RNA 쌍 손상(damage) 신뢰성(reliability)은 기존 이중나선 보다 우수함을 보이고 있다. k=4, N=1인 경우 블록 순환 상보 쌍 신뢰도는 93.75%이고, k=4, N=4인 경우 신뢰도는 98.44%로 기존 이중나선의 경우 보다 4.69% 개선된다.

Characteristic polynomials of graph bundles with productive fibres

  • Kim, Hye-Kyung;Kim, Ju-Young
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.75-86
    • /
    • 1996
  • Let G be a finite simple connected graph with vertex set V(G) and edge set E(G). Let A(G) be the adjacency matrix of G. The characteristic polynomial of G is the characteristic polynomial $\Phi(G;\lambda) = det(\lambda I - A(G))$ of A(G). A zero of $\Phi(G;\lambda)$ is called an eigenvalue of G.

  • PDF

태극 패턴 DNA 행렬 코드의 평형과 불평형 해석 (A Balanced and Unbalanced Analysis of the DNA Matrix Code of The Taegeuk Pattern)

  • 김정수;이문호
    • 공학교육연구
    • /
    • 제21권1호
    • /
    • pp.77-89
    • /
    • 2018
  • The chromosomes of all the world are the same in all 24 pairs, but the key, skin color and appearance are different. Also, it is the resistance of adult disease, diabetes, cancer. In 1953, Watson, Crick of Cambridge University experimentally discovered a DNA double helix structure, and in 1962, They laureates the Nobel Prize. In 1964, Temin, University of Wisconsin, USA, experimentally identified the ability to copy gene information from RNA to DNA and received the Nobel Prize in 1975. In this paper, we analyzed 24 pairs of DNA chromosomes using mathematical matrices based on the combination order sequence of four groups, and designed the Taegeuk pattern genetic code for the first time in the world. In the case of normal persons, the middle Yin-Yang taegeuk is designed as a block circulant Jacket matrix in DNA, and the left-right and upper-lower pairs of east-west and north-south rulings are designed as pair complementary matrices. If (C U: A G) chromosomes are unbalanced, that is, people with disease or inheritance become squashed squirming patterns. In 2017, Professor Michel Young was awarded a Nobel by presenting a biological clock and experimentally explained the bio-imbalance through a yellow fruit fly experiment.This study proved mathematical matrices for balanced and unbalanced RNA.