• Title/Summary/Keyword: g-circulant matrix

Search Result 6, Processing Time 0.019 seconds

ON THE g-CIRCULANT MATRICES

  • Bahsi, Mustafa;Solak, Suleyman
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.695-704
    • /
    • 2018
  • In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.

A RECURSIVE ALGORITHM TO INVERT MULTIBLOCK CIRCULANT MATRICES

  • Baker, J.;Hiergeist, F.;Trapp, G.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.45-50
    • /
    • 1988
  • Circulant and multiblock circulant matrices have many important applications, and therefore their inverses are of considerable interest. A simple recursive algorithm is presented to compute the inverse of a multiblock circulant matrix. The algorithm only uses complex variables, roots of unity and normal matrix/vector operations.

  • PDF

ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES

  • Dokuzova, Iva
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1441-1456
    • /
    • 2017
  • We consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^3=id$. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We introduce three classes of such manifolds. Two of them are determined by special properties of the curvature tensor. The third class is composed by manifolds whose structure q is parallel with respect to the Levi-Civita connection of g. We obtain some curvature properties of these manifolds (M, g, q) and give some explicit examples of such manifolds.

A Double Helix DNA Structure Based on Block Circulant Matrix (II) (블록순환 행렬에 의한 이중나선 DNA 구조 (II))

  • Park, Ju-Yong;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.229-233
    • /
    • 2016
  • In this paper, we present the four genetic nitrogenous bases of C, U(T), A, G to matrices and describe the structures from $4{\times}4$ RNA(ribose nucleic acid) to $8{\times}8$ DNA((deoxyribose nucleic acid) matrices. we analysis a deoxyribose nucleic acid (DNA) double helix based on the block circulant Hadamard-Jacket matrix (BCHJM). The orthogonal BCHJM is anti-symmetric pair complementary of the core DNA. The block circulant ribonucleic acid (RNA) repair damage reliability is better than the conventional double helix. In case of k=4 and N=1, the reliability of block circulant complementarity is 93.75%, and in case of k=4 and N=4, it is 98.44%. Therefore it improves 4.69% than conventional case of double helix.

Characteristic polynomials of graph bundles with productive fibres

  • Kim, Hye-Kyung;Kim, Ju-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 1996
  • Let G be a finite simple connected graph with vertex set V(G) and edge set E(G). Let A(G) be the adjacency matrix of G. The characteristic polynomial of G is the characteristic polynomial $\Phi(G;\lambda) = det(\lambda I - A(G))$ of A(G). A zero of $\Phi(G;\lambda)$ is called an eigenvalue of G.

  • PDF

A Balanced and Unbalanced Analysis of the DNA Matrix Code of The Taegeuk Pattern (태극 패턴 DNA 행렬 코드의 평형과 불평형 해석)

  • Kim, Jeong Su;Lee, Moon Ho
    • Journal of Engineering Education Research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2018
  • The chromosomes of all the world are the same in all 24 pairs, but the key, skin color and appearance are different. Also, it is the resistance of adult disease, diabetes, cancer. In 1953, Watson, Crick of Cambridge University experimentally discovered a DNA double helix structure, and in 1962, They laureates the Nobel Prize. In 1964, Temin, University of Wisconsin, USA, experimentally identified the ability to copy gene information from RNA to DNA and received the Nobel Prize in 1975. In this paper, we analyzed 24 pairs of DNA chromosomes using mathematical matrices based on the combination order sequence of four groups, and designed the Taegeuk pattern genetic code for the first time in the world. In the case of normal persons, the middle Yin-Yang taegeuk is designed as a block circulant Jacket matrix in DNA, and the left-right and upper-lower pairs of east-west and north-south rulings are designed as pair complementary matrices. If (C U: A G) chromosomes are unbalanced, that is, people with disease or inheritance become squashed squirming patterns. In 2017, Professor Michel Young was awarded a Nobel by presenting a biological clock and experimentally explained the bio-imbalance through a yellow fruit fly experiment.This study proved mathematical matrices for balanced and unbalanced RNA.