• Title/Summary/Keyword: fuzzy-set

Search Result 1,487, Processing Time 0.034 seconds

Analyzing Typology and Factor Combinations for Regional Innovation in Korea Using fs/QCA (퍼지셋 질적비교분석을 이용한 우리나라 지역혁신의 유형 및 요인 분석)

  • Kim, Gyu-hwan;Park, In Kwon
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.4
    • /
    • pp.3-18
    • /
    • 2018
  • These days, regional innovation draws more attention than ever as a growth engine for regional economies, and governments put a variety of efforts to establish Regional Innovation systems(RISs). In this circumstance, this study aims to analyze types of RISs and the combinations of the factors influencing innovation performance as measured by patent application. Most of previous works have depended on case-oriented or variable-oriented strategy to classify types of RISs or to analyze the effects on performance of innovation factors, having some limitations: Variable-oriented approaches fail to capture complex combinatory effects of factors, while case-oriented approaches tend to depend on subjective interpretation. This study made use of the recently proposed fs/QCA(Fuzzy-set Qualitative Comparative Analysis) to overcome the limitations of those strategies. Based on the theory of RIS, three factors for regional innovation-input, infrastructure, and network-are used to classify 16 Korean Provinces. The results show that eight types of regional innovation types are identified, and that most of the regions are classified into either IN-type, equipped with high levels of Input and Network, or F-type, with high levels of infrastructure. In addition, applying seven sub-variables of the three factors to the fussy-set combination factor analysis, we examine a combination of factors influencing patent application. The results show that regions with high levels of R&D expense, valid patent, industry-academia cooperation, IP budget, and TLO values, and low IP capital almost always have a high level of patent application. Therefore, for regional innovation, the public sector needs to provide institutional support for R & D personnel training. It is also important to for both the public and the private sectors to make efforts to stimulate IP financing.

Study on Color Coordination Simulator based on Dual Mapping Model (이중매핑모델에 의한 칼라배색 시뮬레이터 구축에 관한 연구)

  • 김돈한;정지원
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.57-66
    • /
    • 2003
  • In order to develop color image, color simulation based on data processing techniques has been developed and applied to data interpretation tools or product design supporting systems. It has been a commonmethod to use image key words to search for data and provide color coordination samples that determine computer combination in computerized support systems until recently. However, this method does not reflect system designers and users taste or preference on making final choices of color coordination samples because the database was designed based on an assumption of standardized group that was established database from large scaled image evaluation research. In this study, we suggest a color coordination simulator that supports designer's final decision-making procedure on sample groups through the simulation of various color combination. The simulator allows communications with the system to explore a designer's color combination taste and preference, and provides a user for an efficient environment to judge the optimum result. The color coordination simulator was designed based upon Dual mapping model derived from a designer's thought process, and four steps of operations longrightarrowdefining color concept longrightarrowmaking color sample groupslongrightarrow simulation-determining ranking among final combination samples - will be assisting color design process.

  • PDF

A study on the Urban Growth Model of Gimhae City Using Cellular Automata (셀룰라 오토마타를 이용한 김해시의 도시성장모형에 관한 연구 - 1987~2001년을 중심으로 -)

  • Lee, Sung Ho;Yun, Jeong Mi;Seo, Kyung Chon;Nam, Kwang Woo;Park, Sang Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 2004
  • The purpose of this study is to decide an appropriate neighborhood and a transition rule of cellular automata by analyzing the past growth process of urban areas in Gimhae. With cellular automata which can manage the change based on the dynamic model and time, this study analyzes the urban growth of Gimhae from 1987 to 2001. Also, through the simulation of different types for neighborhood and transition rules, we can find the appropriate neighborhood and the transition rule for Gimhae. In conclusion, the forecast of physical urban growth pattern is more accurate under conditions when the number of matrixes for the neighborhood is small, the shape of the neighborhood is rectangular, "${\alpha}$" value, which control the pace of urban growth, is low and the transition possibility ($P_{ij}$) is high.

  • PDF

Context Dependent Fusion with Support Vector Machines (Support Vector Machine을 이용한 문맥 민감형 융합)

  • Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.37-45
    • /
    • 2013
  • Context dependent fusion (CDF) is a fusion algorithm that combines multiple outputs from different classifiers to achieve better performance. CDF tries to divide the problem context into several homogeneous sub-contexts and to fuse data locally with respect to each sub-context. CDF showed better performance than existing methods, however, it is sensitive to noise due to the large number of parameters optimized and the innate linearity limits the application of CDF. In this paper, a variant of CDF using support vector machines (SVMs) for fusion and kernel principal component analysis (K-PCA) for context extraction is proposed to solve the problems in CDF, named CDF-SVM. Kernel PCA can shape irregular clusters including elliptical ones through the non-linear kernel transformation and SVM can draw a non-linear decision boundary. Regularization terms is also included in the objective function of CDF-SVM to mitigate the noise sensitivity in CDF. CDF-SVM showed better performance than CDF and its variants, which is demonstrated through the experiments with a landmine data set.

Operation diagnostic based on PCA for wastewater treatment (PCA를 이용한 하폐수처리시설 운전상태진단)

  • Jun Byong-Hee;Park Jang-Hwan;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.383-388
    • /
    • 2006
  • SBR is one of the most general sewage/wastewater treatment processes and, particularly, has an advantage in high concentration wastewater treatment like sewage wastewater. A Kernel PCA based fault diagnosis system for biological reaction in full-scale wastewater treatment plant was proposed using only common bio-chemical sensors such as ORP(Oxidation-Reduction Potential) and DO(Dissolved Oxygen). During the SBR operation, the operation status could be divided into normal status and abnormal status such as controller malfunction, influent disturbance and instrumental trouble. For the classification and diagnosis of these statuses, a series of preprocessing, dimension reduction using PCA, LDA, K-PCA and feature reduction was performed. Also, the diagnosis result using differential data was superior to that of raw data, and the fusion data show better results than other data. Also, the results of combination of K-PCA and LDA were better than those of LDA or (PCA+LDA). Finally, the fault recognition rate in case of using only ORP or DO was around maximum 97.03% and the fusion method showed better result of maximum 98.02%.

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali;Darvishmoghaddam, Ehsan;Zandi, Yousef;Parvan, Mahdi;Safa, Maryam;Abdullahi, Muazu Mohammed;Heydari, Abbas;Wakil, Karzan;Gebreel, Saad A.M.;Khorami, Majid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.525-530
    • /
    • 2018
  • As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

An Adaptive Tutoring System based on CAT using Item Response Theory and Dynamic Contents Providing (문항반응 이론에 의한 컴퓨터 적응적 평가와 동적 학습내용 구성에 기반한 적응형 고수 시스템)

  • Choi Sook-Young;Yang Hyung-Jeong;Baek Hyon-Ki
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.438-448
    • /
    • 2005
  • This paper proposes an adaptive tutoring system that provides learning materials dynamically according to the learners' teaming character and ability. Our system, in which a learning phase and a test phase are linked together, supports the personalized instruction-learning by providing the teaming materials by level in the learning phase according to the teaming ability estimated in the test phase. We design and implement a tutoring system consisted of an evaluation component and a learning component. An evaluation component uses a computerized adaptive test(CAT) based on item response theory to evaluate learners' ability while a learning component employs fuzzy level set theory so that teaming contents are provided to learners according to learners' level.

Automatic Recognition of the Front/Back Sides and Stalk States for Mushrooms(Lentinus Edodes L.) (버섯 전후면과 꼭지부 상태의 자동 인식)

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.124-137
    • /
    • 1994
  • Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.

  • PDF

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.