• 제목/요약/키워드: fuzzy variables

검색결과 595건 처리시간 0.025초

물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정 (An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition)

  • 김동기;이성규;이문욱;강이석
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

Analysis of climate change mitigations by nuclear energy using nonlinear fuzzy set theory

  • Tae Ho Woo;Kyung Bae Jang;Chang Hyun Baek;Jong Du Choi
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4095-4101
    • /
    • 2022
  • Following the climate-related disasters considered by several efforts, the nuclear capacity needs to double by 2050 compared to 2015. So, it is reasonable to investigate global warming incorporated with the fuzzy set theory for nuclear energy consumption in the aspect of fuzziness and nonlinearity of temperature variations. The complex modeling is proposed for the enhanced assessment of climate change where simulations indicate the degree of influence with the Boolean values between 0.0 and 1.0 in the designed variables. In the case of OIL, there are many 1.0 values between 20th and 60th months in the simulations where there are 10 times more for a 1.0 value in influence. Hence, the temperature variable can give the effective time using this study for 100 months. In the analysis, the 1.0 value in NUCLEAR means the highest influence of the modeling as the temperature increases resulting in global warming. In detail, the first influence happens near the 8th month and then there are four times more influences than effects in the early part of the temperature mitigation. Eventually, in the GLOBAL WARMING, the highest peak is around the 20th month, and then it is stabilized.

Artificial Intelligence Applications as a Modern Trend to Achieve Organizational Innovation in Jordanian Commercial Banks

  • Al-HAWAMDEH, Majd Mohammed;AlSHAER, Sawsan A.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.257-263
    • /
    • 2022
  • The objective of this study was to see how artificial intelligence applications affected organizational innovation in Jordanian commercial banks. Both independent and dependent variables were measured in three dimensions: expert systems, neural network systems, and fuzzy logic systems for artificial intelligence applications variable. Product innovation, process innovation, and management innovation for the organizational innovation variable. To achieve study objectives, a questionnaire was developed and distributed to a sample of one hundred fifty-three managers in Jordanian commercial banks, who were selected according to the simple random sampling method. Except for the neural network systems dimension, which comes in at an average level, the study indicated that there is a high level of organizational innovation and artificial intelligence applications. Furthermore, the findings revealed that artificial intelligence applications have a significant impact on organizational innovation in Jordanian commercial banks, with the most important artificial intelligence application being a fuzzy logic system. The study suggested keeping track of technological advancements in the field of artificial intelligence applications and incorporating them into banking operations by benchmarking with the best commercial bank practices and allocating a portion of the budget to technological applications and infrastructure development, as well as balancing between technology use and information security risks to ensure client privacy is protected.

입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계 (A new Design of Granular-oriented Self-organizing Polynomial Neural Networks)

  • 오성권;박호성
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

데이터 마이닝과 지능 모델링에 기반한 에칭공정의 공정관리시스템 설계 (Design of Process Management System based on Data Mining and Artificial Modelling for the Etching Process)

  • Bae, Hyeon;Kim, Sung-shin;Woo, Kwang-Bang
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.390-395
    • /
    • 2004
  • 반도체 공정은 많은 단위 공정으로 이루어진 복잡하고 동적인 공정이다. 그 중 에칭공정은 반도체 생산에서 중요한 공정중 하나이다. 본 논문에서는 데이터 마이닝과 지식 획득을 통한 의사지원시스템으로 생산성과 수율을 높일 수 있는 시스템을 구성하고자 하였다. 제안된 방법은 퍼지 논리와 신경망으로 구성되는데, 신경망으로 에칭공정의 품질을 나타내는 품질에 대한 결과를 예측하고, 예측된 결과를 퍼지 추론 시스템으로 분류하는 과정으로 수행된다. 퍼지 논리에 사용된 규칙은 전문가의 지식에 기반 하여 도출되거나 데이터로부터 도출된다. 본 시스템을 통해 공정의 최적 조건을 찾아 효율을 높이는 것이 본 연구의 주요 목표이다.

Eco-System: 클라우드 컴퓨팅환경에서 REC 가격예측 시뮬레이션 (Eco-System: REC Price Prediction Simulation in Cloud Computing Environment)

  • 조규철
    • 한국시뮬레이션학회논문지
    • /
    • 제23권4호
    • /
    • pp.1-8
    • /
    • 2014
  • 클라우드 컴퓨팅은 정보의 다양성과 빅데이터를 IT자원을 이용하여 처리할 수 있는 컴퓨팅 개념이다. 정부는 신재생에너지를 활용한 전력생산을 장려하기 위해 RPS를 시행하였고 시스템을 구축하여 지리적으로 분산되어 있는 빅데이터를 수집하여 운영하고 있다. RPS제도를 이행하는 발전사업자들은 의무할당량 중 REC 부족분을 타 발전사업자들로부터 REC를 구매하여 조달해야 한다. REC는 자율시장에 근거하여 거래되고 있고, 매매가격의 편차가 크기 때문에 RPS 빅데이터를 통해 형평성있는 REC가격을 예측할 필요가 있다. 본 연구에서는 부정확한 가격추이와 규칙을 정량적으로 표현하여, 클라우드 환경에서 퍼지기반으로 REC가격을 예측하는 방법을 제안한다. 클라우드 환경에서 RPS 빅데이터를 통한 상호연관성과 가격결정에 영향을 주는 변수들에 대한 분석이 가능하고 시뮬레이션을 통해 REC 가격을 예측할 수 있다. 클라우드 환경에서 퍼지로직은 매물수량과 매매가격을 이용하여 투명성있는 REC 가격을 예측하고 장기적으로 수렴된 가격을 제시할 것이다.

대구광역도시권의 지리통계적 도시환경구조 평가에 관한 연구 (A Study on the Geostatistical Evaluation of Urban and Environmental Structure of Taegu Metropolitan Region)

  • 박인환;장갑수
    • 환경영향평가
    • /
    • 제8권3호
    • /
    • pp.1-11
    • /
    • 1999
  • This study was carried out to evaluate urban environmental structure in Taegu metropolitan region(TMR) with factor analysis, fuzzy set theory, geostatistic and geographic information system(GIS). The factor analysis could choose the representative one out of multiple variables and simplify the evaluation of the urban environmental structure. The fuzzy approach is an attempt to model an aspect of human thinking previously neglected; it starts from the premise that humans don't represent classes of objects as fully disjoint but rather as sets where transitions from membership to non-membership is gradual. The Geographic Information System(GIS) could connect attributes of factor scores derived from factor analysis to digital map by a method so called 'Spatial join'. The results obtained were as follows: Urbanization appearance was concentrated in the large cities, and this appearance was partial extremely, therefore, there has been a structural gap between urban area and agricultural area which was unified into the urban area. All inclinations didn't become worse after sudden urbanization. For example, suburban agriculture was developed as a large scale in the region near the large cities. Then it encouraged farmers in changing their old cultivating methods to the latest ones. But many districts in urban fringe had symptom of urbanization, the districts which were located between large cities have been developed gradually because of urban sprawl, and played a role in connecting each city. Therefore, due to the urbanization, forestry area and agricultural land, well conserved in the agricultural town, could be easily destroyed. In a different way with the urbanization of the Seoul metropolitan region, that of TMR was centralized upon the center of each city, and it was also very partial. But, because so many regions have the potentiality of urbanization, hereafter, the urbanization process in each region is likely to be different multifariously according to the urban management methods.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석 (Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules)

  • 고준현;송찬석;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.562-568
    • /
    • 2014
  • 기상레이더에는 강수에코와 비강수 에코가 섞여 존재한다. 이런 모호한 지점의 판단이 난해함으로 정확한 일기 예보를 하기는 매우 어려운 일이다. 본 논문에서는 기상청 레이더의 UF 데이터로부터 데이터를 추출하였다. 설계하는 두 분류기의 입출력 데이터는 강수 에코와 비 강수 에코의 특성분석을 통해 구성된다. 더 좋은 성능을 나타나는 입력변수를 사용 하였으며, 에코분류기는 퍼지 뉴럴 네트워크를 기반으로 설계한다. 에코 판단모듈 1과 판단모듈 2를 고려하여 에코분류기의 성능 비교연구를 수행 한다.