• Title/Summary/Keyword: fuzzy stability

Search Result 622, Processing Time 0.03 seconds

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

Design and Fabrication of Ballast Water Treatment System using Fuzzy PID Controller (퍼지 PID 제어 기법을 이용한 선박평형수 처리 시스템 설계 및 제작)

  • Lee, Young-Dong;Ahn, Byeong-Gu;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.108-114
    • /
    • 2015
  • Ballast water is carried by ships to ensure stability, trim and structural integrity. When a ship loads cargo, the ballast water is discharged. When foreign marine microorganisms are introduced into new marine environments, they pose a threat to the local marine ecological system. UV system is commonly used for the disinfection of waste and surface water. This method would not be as efficient because some species do survive to form viable populations, much of the sediment and organisms at the bottom of tanks, and may become serious pests. In this paper, we designed and implemented ballast water treatment system using fuzzy PID controller to prevent lamp damage, and to reduce the formation of the viable populations. The experiments were conducted with ballast water treatment system using fuzzy PID controller with short time exposure to the temperature above $40^{\circ}C$. This system was shown to be effective by significantly reducing bacterial population and lamp life extension through appropriate temperature of ballast water.

Study on the Fuzzy Inference System for Objectivity of Ground Evaluation in Tunnelling (터널지반 평가의 객관화를 위한 퍼지추론시스템 연구)

  • 조만섭;김영석
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.6-19
    • /
    • 2003
  • This study has for its object to increase an objectivity of the observation result in the face mapping of tunnel and to suggest the reasonable support and reinforcement methods to be considered the rock properties. It was developed in this study to the tunnel stability evaluation system(Prototype NFEST) to be used fuzzy set theory and neuro-fuzzy techniques, and this system was verified according to the reliability evaluation between the 36 learning data and the inferred results. When it summarized the results; (1) 12 evaluation items and ranges were proposed to be modified basis on the RMR which are well known to the domestic workers. (2) It was shown that correlation coefficient(│R│) between $RMR_{inf}$ inferred by 12 items and $RMR_{org}$ due to arithmetic total, $RMR_{chk}$ due to subjective judgement of observer are relatively high relationship with each 0.83 and 0.79. (3) Inferred result of the total tunnel safety shows also a good relationship with $RMR_{inf}$ (│R│=0.7) and the rock weathering(│R│=0.84).

Design of Excitation Control System of Synchronous Generator on Board Ships (선박용 동기 발전기의 여자 제어시스템 설계)

  • Lee, Youngchan;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.298-305
    • /
    • 2015
  • This paper provides experimental results of an excitation control system of the synchronous generator on board ships in accordance with rules of classification society to make sure its performance. The experiment compares and reviews control results between PID control and fuzzy logic control applied to change of loads of the generator in order to make sure to satisfy the rules of classification society. Both of them are written by Labview program. In case of PID Control, this paper firstly adjusts the gains by ultimate sensitive method and the gains is more tuned by engineer's experience. And the fuzzy logic controller uses Mamdani method to make membership function for error between reference voltage and measuring voltage, differential error rate and output voltage. This paper is to make sure the experimental results of the proposed excitation control system applied to actual small synchronous generator with PID control and fuzzy logic written by using Labview program and it is proved on stability and improvement through experiments.

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series (Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계)

  • Sung Hwa Chang;Park Jin Bae;Go Sung Hyun;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.881-886
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent tile complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of tile digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

COMPREHENSIVE ASSESSMENT MODEL OF ECOLOGICAL RIPARIAN ZONE

  • Xia, Ji-Hong;Wu, Wei;Yan, Zhong-Min
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2005
  • Comprehensive assessment of ecological riparian zone is to analyze and evaluate the status of riparian zone ecosystem. The existing problem of the ecosystem can be found through the assessment. The AHP-FUZZY method used in the assessment is based on the hierarchy model of index, grade model of object, and attribution degree of index. Accordingly, the four models have been discussed and presented from the aspect of the stability, landscape, eco-health and eco-safety of riparian zone.

  • PDF