• Title/Summary/Keyword: fuzzy sliding

Search Result 258, Processing Time 0.026 seconds

Chattering-free sliding mode control with a fuzzy model for structural applications

  • Baghaei, Keyvan Aghabalaei;Ghaffarzadeh, Hosein;Hadigheh, S. Ali;Dias-da-Costa, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • This paper proposes a chattering-free sliding mode control (CFSMC) method for seismically excited structures. The method is based on a fuzzy logic (FL) model applied to smooth the control force and eliminate chattering, where the switching part of the control law is replaced by an FL output. The CFSMC is robust and keeps the advantages of the conventional sliding mode control (SMC), whilst removing the chattering and avoiding the time-consuming process of generating fuzzy rule basis. The proposed method is tested on an 8-story shear frame equipped with an active tendon system. Results indicate that the new method not only can effectively enhance the seismic performance of the structural system compared to the SMC, but also ensure system stability and high accuracy with less computational cost. The CFSMC also requires less amount of energy from the active tendon system to produce the desired structural dynamic response.

Adaptive Fuzzy Sliding Mode Controller for Nonaffine Nonlinear Systems

  • Park, Jang-Hyun;Kim, Dong-Won;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.62.6-62
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Problem Formulation $\textbullet$ Feedback Linearizing Controller Design $\textbullet$ Fuzzy System to Cancel System Uncertainty $\textbullet$ Adatptive Fuzzy Sliding Mode Controller Design $\textbullet$ Simulations $\textbullet$ Conclusions

  • PDF

Robust Adaptive Fuzzy Controller Using a Sliding Control Input (슬라이딩 제어 입력을 이용한 강인 적응 퍼지 제어기)

  • 이선우;박윤서
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.35-38
    • /
    • 1998
  • Abstracts In this paper, we propose a robust adaptive fuzzy control scheme using a sliding control input for tracking of a class of MISO nonlinear systems with unknown bounded external disturbances. In the proposed scheme, the nonlinearity is estimated adaptively via a fuzzy inference based on a fuzzy model. A sliding control input is introduced such that boundedness of all signals in the system is guaranteed even though the existence of a fuzzy approximation error and external disturbances. The controller parameters are updated by using a proposed adaptation law, which is similar 1-modification method. Computer simulation shows the effectiveness of the proposed control scheme.

  • PDF

Robust Control of Induction motor using Fuzzy Sliding Adaptive Controller with Sliding Mode Torque Observer

  • Yoon, Byung-Do;Rhew, Hong-Woo;Lim, Ick-Hun;Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.420-425
    • /
    • 1996
  • In this paper a robust speed controller for an induction motor is proposed. The speed controller consists or a fuzzy sliding adaptive controller(FSAC) and a sliding mode torque observer(SMTO). FSAC removes the problem or oscillations caused by discontinuous inputs of the sliding mode controller. The controller also provides robust characteristics against parameter and sampling time variations. Although, however, the performance of FSAC is better than PI controller and fuzzy controller in robustness, it generates the problem of slow response time. To alleviate this problem, a compensator, which performs feedforward control using torque signals produced by SMTO, is added. The simulation and hardware implementation results show that the proposed system is robust to the load disturbance, parameter variations, and measurement noises.

  • PDF

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Speed Control System of Induction Motor with Fuzzy-Sliding Mode Controller for Traction Applications

  • Kim, Duk-Heon;Ryoo, Hong-Je;Rim, Geun-Hie;Kim, Yong-Ju;Won, Chung-Yuen
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.52-58
    • /
    • 2003
  • The application of a sliding mode control for improving the dynamic response of an induction motor based speed control system is presented in this paper and provides attractive features, such as fast response, good transient performance, and insensitivity to variations in plant parameters and external disturbance. However, chattering is a difficult problem for which the sliding mode control is a popular solution. This paper presents a new fuzzy-sliding mode controller for a sensorless vector-controlled induction motor servo system to practically eliminate the chattering problem for traction applications. A DSP based implementation of the speed control system is employed. Experimental results are presented using a propulsion system simulator. The performance of the drive is shown to be practically free from chattering.

The Control of an Inverted Pendulum using Fuzzy-Sliding Control (퍼지 슬라이딩 제어를 이용한 도립 진자 제어)

  • Jang, Byeong-Hun;Ko, Jae-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.480-482
    • /
    • 1998
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. This study shows that the proposed fuzzy sliding mode control could reduce chattering problemed in sliding mode control. In this paper, an inverted pendulum is effectively controlled by the fuzzy sliding control technique. To reduce movable region of the inverted pendulum body, the angle and its integrated quantity are applied to the controller. The effectiveness of result is shown by the simulation and the experimental test for the inverted pendulum.

  • PDF

The Sliding Controller designed by the Indirect Adaptive Fuzzy Control Method (간접 적응 퍼지 제어기법에 의한 슬라이딩 제어기 설계)

  • Choi, Chang-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2283-2286
    • /
    • 2000
  • Sliding control is a powerful approach to controlling nonlinear and uncertain systems. Conventional sliding mode control suffer' from high control gain and chattering problem. also it needs mathematic! modeling equations for control systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. In this paper, without mathematical modeling equations, the plant parameters in sliding mode are estimated by the indirect adaptive fuzzy method. the proposed algorithm could analyze the system's stability and convergence behavior using Lyapunov theory. so sliding modes are reconstructed and decreased tracking error. moreover convergence time took a short. An example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors (근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.527-532
    • /
    • 2005
  • In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

Adaptive fuzzy sliding mode controller design using learning rate control (학습 속도 재어 기능을 가진 적응 퍼지 슬라이딩 모드 제어기 설계)

  • Hwang, Eun-Ju;Lee, Hee-Jin;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.226-228
    • /
    • 2006
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF