• 제목/요약/키워드: fuzzy rules

검색결과 1,218건 처리시간 0.037초

경쟁적 퍼지다항식 뉴런에 기초한 고급 자기구성 뉴럴네트워크 (Advanced Self-Organizing Neural Networks Based on Competitive Fuzzy Polynomial Neurons)

  • 박호성;박건준;이동윤;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, we propose competitive fuzzy polynomial neurons-based advanced Self-Organizing Neural Networks(SONN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. The proposed SONN dwells on the ideas of fuzzy rule-based computing and neural networks. And it consists of layers with activation nodes based on fuzzy inference rules and regression polynomial. Each activation node is presented as Fuzzy Polynomial Neuron(FPN) which includes either the simplified or regression polynomial fuzzy inference rules. As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership (unction are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SONN architectures, that is, the basic and modified one with both the generic and the advanced type. Here the basic and modified architecture depend on the number of input variables and the order of polynomial in each layer. The number of the layers and the nodes in each layer of the SONN are not predetermined, unlike in the case of the popular multi-layer perceptron structure, but these are generated in a dynamic way. The superiority and effectiveness of the Proposed SONN architecture is demonstrated through two representative numerical examples.

유전 알고리즘에 의해 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기 (Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms)

  • 김병만;김종완;허남철
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.123-128
    • /
    • 2002
  • 본 논문에서는 유전 알고리즘을 사용하여 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기가 교차로 관리를 위해 제시된다. 일반적인 퍼지 교통 제어기들은 사람에 의해 생성된 제어규칙과 멤버쉽함수들을 사용한다. 그러나 이 방식은 퍼지 제어 시스템을 설계하는데 최적의 해를 보장하지 못한다. 유전 알고리즘은 문제 영역에 관한 휴리스틱한 지식을 쉽게 획득하기 어려운 경우에 최적해를 구하는데 유용한 방법이다. 본 논문에서는 퍼지 교통 제어기들의 근사 최적 규칙과 멤버쉽 함수를 자동으로 결정하는데 유전 알고리즘을 사용한다. 제안된 방법의 효과는 교차로망 시뮬레이션을 통하여 입증하였다.

가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론 (Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations)

  • 이무은;이동은;조상엽
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

퍼지 논리 제어기 설계와 도립 진자에의 적용 (Design of Fuzzy logic Controller and Its Application to Inverted Pendulum)

  • 방성윤;고재호;유창완;배영철;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.539-541
    • /
    • 1997
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. If the rules adequately control the system, the design work is done well. If the rules are inadequate, the designer must modify the rules. Through this procedure, the system can be controlled. In this paper, we design fuzzy controller composed of two parts, one is balancing controller, the other is angle controller.

  • PDF

퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구 (A New Modeling Approach to Fuzzy-Neural Networks Architecture)

  • 박호성;오성권;윤양웅
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구 (A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF

퍼지추론에 의한 등록금 결정 모델의 설계 및 구현 (Design and Implemention of Decision Model for Registration Fee Using the Fuzzy Reasoning)

  • 정홍;피수영;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.97-101
    • /
    • 1997
  • In recent years, there have been a number of applications of fuzzy logic in fuzzy reasoning system. The main objective of these applications is to approximate a decision making using the fuzzy reasoning system. This paper designs a fuzzy reasoning model for the decision making of registration fee at a private school, implements it applying for linguistic variables and fuzzy rules, and evaluates the practical availability of the model. The system accepts fuzzy rules, the type of membership functions, the domain of fuzzy sets and hedge, and fuzzifies the linguistic variables to generates fuzzy sets. The fuzzy sets generated are combined to constructs a solution fuzzy set. Finally, the system defuzzifies the solution fuzzy set to calculate a scalar value which is used for decision making.

  • PDF

개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성 (Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5164-5171
    • /
    • 2011
  • 비선형 공정에 대한 퍼지 모델링은 일반적으로 주어진 데이터를 이용하여 입력 변수를 선정하고 각 입력 변수에 대한 입력 공간을 분할하여 이들 입력 변수 및 공간 분할에 의해 퍼지 규칙을 형성한다. 퍼지 규칙의 전반부는 입력 변수 선정, 공간 분할 수 및 소속 함수에 의해 동정되고 퍼지 규칙의 후반부는 간략 추론, 선형 추론에 의해 다항식 함수의 형태로 동정된다. 일반적으로 주어진 데이터를 이용한 비선형 공정에 대한 퍼지 규칙의 형성은 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해 각 입력 공간의 퍼지 분할에 의한 퍼지 규칙을 개별적으로 형성함으로써 복잡한 비선형 공정을 모델링 할 수 있다. 따라서 본 논문에서는 개별적인 입력 공간을 활용하여 퍼지 규칙을 생성한다. 퍼지 규칙의 전반부 파라미터는 입력 데이터의 최소 값과 최대 값을 이용하는 최소-최대 방법을 이용하여 동정되고, 소속 함수는 삼각형, 범종형, 사다리꼴형 소속 함수를 사용한다. 마지막으로, 비선형 공정으로는 널리 이용되는 데이터를 이용하여 시스템 특성 및 성능을 평가한다.

유전자 알고리즘을 이용한 퍼지 제어규칙의 최적동조 (Optimal Auto-tuning of Fuzzy control rules by means of Genetic Algorithm)

  • 김중영;이대근;오성권;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.588-590
    • /
    • 1999
  • In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.

  • PDF

Hard Disk Drive 검사 시스템의 고장 진단용 퍼지 전문가 시스템 (Fuzzy Expert System for Fault Diagnosis of Hard Disk Drive Test Systems)

  • 남창우;박민용;문운철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.597-600
    • /
    • 2002
  • This paper has been studied expert system using fuzzy theory for fault diagnosis of HDD test systems by detecting systems fault and presenting the way of repair using test history and rule base built via interview from exports. The rules of fault diagnosis of HDD test systems are classified into 2 types, fuzzy and crisp, and these have been serialized to decide whether fault diagnosis be done or not by fuzzy rules and to present the way of repair by crisp rules. And then this paper has designed expert system using fuzzy theory for fault diagnosis.

  • PDF