• 제목/요약/키워드: fuzzy rule-based computing

검색결과 29건 처리시간 0.029초

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

Advanced Self-organizing Neural Networks with Fuzzy Polynomial Neurons : Analysis and Design

  • Oh, Sung-Kwun;Lee , Dong-Yoon
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.12-17
    • /
    • 2002
  • We propose a new category of neurofuzzy networks- Self-organizing Neural Networks(SONN) with fuzzy polynomial neurons(FPNs) and discuss a comprehensive design methodology supporting their development. Two kinds of SONN architectures, namely a basic SONN and a modified SONN architecture are dicussed. Each of them comes with two types such as the generic and the advanced type. SONN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulation involves a series of synthetic as well as experimental data used across various neurofuzzy systems. A comparative analysis is included as well.

  • PDF

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

가중 퍼지 페트리네트를 이용한 가중 퍼지 후진추론 (Weighted Fuzzy Backward Reasoning Using Weighted Fuzzy Petri-Nets)

  • 조상엽;이동은
    • 인터넷정보학회논문지
    • /
    • 제5권4호
    • /
    • pp.115-124
    • /
    • 2004
  • 본 논문에서는 가중 퍼지 페트리네트에 기반을 둔 규칙기반시스템을 위한 가중 퍼지 후진추론 알고리즘을 제안한다. 규칙기반시스템에 있는 퍼지 생성규칙은 가중 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 진리값과 규칙의 확신도는 퍼지 숫자로 표현한다. 그리고 규칙에 나타나는 퍼지 명제의 가중값도 퍼지 숫자로 표현하다. 제안한 가중 퍼지 후진추론 알고리즘은 목표노드에서 초기노드까지 후진추론 통로를 생성한 후 목표노드의 확신도를 계산한다. 우리가 제안한 알고리즘은 규칙기반시스템이 더 유연하고 사람과 같은 방법으로 가중 퍼지 후진추론을 하는 것을 가능하게 한다.

  • PDF

퍼지규칙 기반 시스템에서 불필요한 속성 감축에 의한 패턴분류 (Pattern classification on the basis of unnecessary attributes reduction in fuzzy rule-based systems)

  • 손창식;김두완
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.109-118
    • /
    • 2007
  • 본 논문에서는 퍼지규칙 기반 시스템에서 규칙 내에 포함된 불완전한 속성을 제거하여 보다 간략화 된 규칙으로도 분류할 수 있는 방법을 제안하였다. 제안한 방법에서는 규칙 내에 포함된 불완전한 속성을 제거하기 위해 러프집합을 이용하였고 보다 명확한 분류를 위해 출력부 소속함수의 적합도가 최대인 속성들을 추출하였다. 또한 모의실험에서는 제안된 방법의 타당성을 검증하기 위해 rice taste data를 기반으로 규칙 감축 전 퍼지 max-product 결과와 규칙 감축 후 퍼지 max-product 결과를 비교하였다. 그 결과, 규칙 감축 전 max-product 결과와 규칙 감축 후 max-product 결과가 정확히 일치함을 볼 수 있었고, 보다 객관적인 검증을 위해 비퍼지화 된 실수 구간을 비교하였다.

  • PDF

승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용 (Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures)

  • 김승진;김형곤;이종수;강신일
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구 (A New Modeling Approach to Fuzzy-Neural Networks Architecture)

  • 박호성;오성권;윤양웅
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF