• Title/Summary/Keyword: fuzzy reasoning approach

Search Result 65, Processing Time 0.027 seconds

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models (퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구)

  • Lee, Bae-Ho;Kim, So-Yeon;Kim, Kwang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2447-2456
    • /
    • 1998
  • Edge detection in the presence of noise is a well-known problem. this pper atempts to implement edge detection algorithms using fuzzy reasoning of fuzzy membership models. It examines an application-motived approach for solving the problem. Our approach is divided into three stages; fitering, segmentation and tracing. Filtering removes the noise from the original image and segmentation determines the edges and deects them. Finally, tracing assembles the edges into the related structure. Proposed method can be used effectively on these procedures by using fuzzy reasoning based on fuzzy models. In is compared with the previous edge detectio algorithms with fvorable results. Simulation results of the research are presented and discussed.

  • PDF

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF

Automatic Fuzzy Model Identification Using Genetic Algorithm (유전 알고리듬을 이용한 퍼지모델의 자동 동정)

  • Son, You-Seck;Chnng, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1009-1011
    • /
    • 1996
  • This paper presents an approach to building multi-input and single-output fuzzy models for nonlinear data-based systems. Such a model is composed of fuzzy rules, and its output is inferred by simplified reasoning. Optimal structure and membership parameters for a fuzzy model are automatically and simultaneously identified by GA(Genetic Algorithm). Numerical examples are provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce a fuzzy model with higher accuracy and a smaller number of fuzzy rules than the ones achieved previously in other methods.

  • PDF

Electrical Fire Cause Diagnosis System Using a Knowledge Base

  • Lee, Jong-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2007
  • For last several decades with the achievement of fast economic development, the electrical fires occupies over 30 percent of total fire incidents almost every year in Korea and not decreased in spite of much times and efforts. Electrical fire cause diagnostics are to confirm a cause for the fire by examination of fire scene. Cause diagnosis methods haven't been systematized yet, because of limits for available information, investigator's biased knowledge, etc. Therefore, in order to assist the investigators and to find out the exact causes of electrical fires, required is research for an electrical fire cause diagnosis system using DB, computer programming and some mathematical tools. The electrical fire cause diagnosis system has two functions of DB and electrical fire cause diagnosis. The cause diagnosis is conducted by a case-based reasoning on a case base and rule-based reasoning on a rule base. For the diagnosis with high reliability, a mixed reasoning approach of a case-based reasoning and fuzzy rule-based reasoning has been adopted. The electrical fire cause diagnosis system proposes the electrical fire causes inferred from the diagnosis processes, and possibility of the causes as well.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Development of a Risk Analysis Assessment Models for the Construction Projects (건설공사의 위험도 분석평가 및 모델개발)

  • Lee, Jeong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.233-240
    • /
    • 1999
  • Even though the recent construction safety disasters not only result in the loss inside construction sites but also become to a large public disasters, safety activities are managed in an irrational way and safety rules are ignored in the construction sites which leads to occur same type of disasters repeatedly. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the general construction projects safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique base on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF

Position/Force Control of Robotic Manipulator with Fuzzy Compensation (퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks (Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정)

  • Hwang, In-Shik;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.