• Title/Summary/Keyword: fuzzy parameters

Search Result 1,236, Processing Time 0.027 seconds

T-S Fuzzy Model Based Indirect Adaptive Fuzzy Observer Design

  • Hyun Chang-Ho;Kim You-Keun;Kim Euntai;Park Mignon
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.348-353
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems arc represented by fuzzy models since fuzzy logic systems arc universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounding Constans and Dynamic Fuzzy Rule Insertion (유계상수 추정과 동적인 퍼지 규칙 삽입을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. In indirect adaptive fuzzy control, based on the proved approximation capability of fuzzy systems, they are used to capture the unknown nonlinearities of the plant. Until now, most of the papers in the field of controller design for nonlinear system considers the affine system using fuzzy systems which have fixed grid-rule structure. We proposes a dynamic fuzzy rule insertion scheme where fuzzy rule-base grows as time goes on. With this method, the dynamic order of the controller reduces dramatically and an appropriate number of fuzzy rules are found on-line. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed-loop system is guaranteed.

  • PDF

Estimation of Optimal Control Parameters and Design of Hybrid Fuzzy Controller by Means of Genetic Algorithms (유전자 알고리즘에 의한 HFC의 최적 제어파라미터 추정 및 설계)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan;Kim, Yong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.599-609
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. First, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The control input for the system in the HFC combined PID controller with fuzzy controller is a convex combination of the FLC's output and PID's output by a fuzzy variable, namely, membership function of weighting coefficient. Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed to show applicability and superiority with the and of three representative processes.

  • PDF

Fuzzy Adaptive Traffic Signal Control of Urban Traffic Network (퍼지 적응제어를 통한 도시교차로망의 교통신호제어)

  • 진현수;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.127-141
    • /
    • 1996
  • This paper presents a unique approach to urban traffic network signal control. This paper begins with an introduction to traffic control in general, and then goes on to describe the approach of fuzzy control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic network condition and adjacent intersection. The signal timing parameters evolve dynamically using only local information to improve traffic signal flow. The signal timing at an intersection is defined by three parameters : cycle time, phase split, off set. Fuzzy decision rules are used to adjust three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. In this paper the effectiveness of this method is showed through simulation of the traffic signal flow in a network of controlled intersection.

  • PDF

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.192-196
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

Indirect Adaptive Fuzzy Observer Design

  • Yang, Jong-Kun;Hyun, Chang-Ho;Kim, Jae-Hun;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.927-933
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어)

  • Park, Geun-Seok;Lim, Jun-Young;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF