• Title/Summary/Keyword: fuzzy modeling

Search Result 736, Processing Time 0.026 seconds

A Study on the Fuzzy Control in the Modeling Equipment of the Height-level of Water by the Personal Computer

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.6-93
    • /
    • 2001
  • This paper describes the results on the fuzzy control in the modeling equipment of the height-level of water, in comparison with the results of PID control in the same system. By using two types of the fuzzy control, it is reported that the response rapidity, smoothness and complexity of the fuzzy control are superior to PID control by the experiment results.

  • PDF

Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure (퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링)

  • 오성권;노석범;남궁문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.41-55
    • /
    • 1995
  • In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified complex method and modified learning algorithm. For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activateti sluge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Evolutionary Design of Fuzzy Rule Base for Modeling and Control (비선형 시스템 모델링 및 제어를 위한 퍼지 규칙기반의 진화 설계)

  • Lee, Chang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.566-574
    • /
    • 2001
  • In designing fuzzy models and controllers, we encounter a major difficulty in the identification f an optimized fuzzy rule base, which is traditionally achieved by a tedious trial-and-error process. This paper presents an approach to the evolutionary design of an optimal fuzzy rule base for modeling and control. Evolutionary programming is used to simultaneously evolve the structure and the parameter of fuzzy rule base for a given task. To check the effectiveness of the suggested approach, four numerical examples are examined. The performance of the identified fuzzy rule bases is demonstrated.

  • PDF

Intelligent Digital Controller Using Digital Redesign

  • Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.187-193
    • /
    • 2003
  • In this paper, a systematic design method of the intelligent PAM fuzzy controller for nonlinear systems using the efficient tools-Linear Matrix Inequality and the intelligent digital redesign is proposed. In order to digitally control the nonlinear systems, the TS fuzzy model is used for fuzzy modeling of the given nonlinear system. The convex representation technique also can be utilized for obtaining TS fuzzy models. First, the analog fuzzy-model-based controller is designed such that the closed-loop system is globally asymptotically stable in the sense of Lyapunov stability criterion. The simulation results strongly convince us that the proposed method has great potential in the application to the industry.

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형(非線型) 시스템의 퍼지 모델링 기법과 안정도(安定度) 해석(解析)에 관한 연구)

  • Lee, J.T.;So, M.O.;Lee, S.S.;Ji, S.J.;Kim, T.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.801-803
    • /
    • 1995
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptation controllers which guarrantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

An Approach to Identify NARMA Models Based on Fuzzy Basis Functions

  • Kreesuradej, Worapoj;Wiwattanakantang, Chokchai
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1100-1102
    • /
    • 2000
  • Most systems in tile real world are non-linear and can be represented by the non-linear autoregressive moving average (NARMA) model. The extension of fuzzy system for modeling the system that is represented by NARMA model will be proposed in this paper. Here, fuzzy basis function (FBF) is used as fuzzy NARMA(p,q) model. Then, an approach to Identify fuzzy NARMA models based on fuzzy basis functions is proposed. The efficacy of the proposed approach is shown from experimental results.

  • PDF

Runoff Forecasting Model by the Combination of Fuzzy Inference System and Neural Network (Fuzzy추론 시스템과 신경회로망을 결합한 하천유출량 예측)

  • Heo, Chang-Hwan;Lim, Kee-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.21-31
    • /
    • 2007
  • This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.

Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process (GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용)

  • Oh, Sung-Kwon;Hwang, Hyung-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-105
    • /
    • 1997
  • In this paper, A new design method of fuzzy modeling is presented for the model identification of nonlinear complex systems. The proposed FPNN(Fuzzy Polynomial Neural Network) modeling implements system structure and parameter identification using GMDH(Group Method of Data Handling) method and linguistic fuzzy implication rules from input and output data of processes. In order to identify premise structure and parameter of fuzzy implication rules, GMDH method and regression polynomial fuzzy reasoning method are used and the least square method is utilized for the identification of optimum consequence parameters. Time series data for gas furnace and those for wastewater treatment process are used for the purpose of evaluating the performance of the proposed FPNN modeling. The results show that the proposed method can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF