• Title/Summary/Keyword: fuzzy membership function distribution

Search Result 33, Processing Time 0.025 seconds

Development of Quality Information Control Technique using Fuzzy Theory (퍼지이론을 이용한 품질 정보 관리기법 개발에 관한 연구)

  • 김경환;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.524-528
    • /
    • 1996
  • Quality information is known to have the characteristic of continuous distribution in many manufacturing processes. It is difficult to describe the process condition by classifying the distribution into discrete ranges which is based on the set concept. Fuzzy control chart has been developed for the control of linguistic data but it still utilizes the dichotomous notion of classical set theory. In this paper, the fuzzy sampling method is studied in order to manage the ambiguous data properly and incorporated for generating fuzzy control chart. The method is based on the fuzzy set concept and considered to be appropriate for the realization of a complete fuzzy control chart. The fuzzy control chart was compared with the conventional generalized p-chart in the sensitivity for quality distribution and robustiness against the noise. The fuzzy control chart with the fuzzy sampling method showed better characteristics.

  • PDF

Traffic Flow Assessment with the Fuzziness of Drivers Driving Speed Attitude (운전자의 주행속도의식의 퍼지성을 고려한 교통류 평가법)

  • 남궁문;장종철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.13-23
    • /
    • 1994
  • This study proposed a method of accessment for traffic flow on roads based on the driver's decision making. In order to, an attempt is carried out to express driving speeds through driver's congnitive language theoretically and experimentally. Membership function is derived to express driver's congnitive language about driving speed through a fuzzy set theory and examines the applicability for speed evaluation. As a resul, the membership function of the recognized as medium by drivers almost agrees with the frequency distribution of speeds on roads constrtained at 50km/h.

  • PDF

Recognition and Classification of Power Quality Disturbances on the basis of Pattern Linguistic Values

  • Liu, XiaoSheng;Liu, Bo;Xu, DianGuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.309-319
    • /
    • 2016
  • This paper presents a new recognition and classification method for power quality (PQ) disturbances on the basis of pattern linguistic values. This method solves the difficulty of recognizing disturbances rapidly and accurately by using fuzzy logic. This method uses classification disturbance patterns to define the linguistic values of fuzzy input variables and used the input variables of corresponding disturbance pattern to set membership functions. This method also sets the fuzzy rules by analyzing the distribution regularities of the input variable values. One characteristic of this method is that the linguistic values of fuzzy input variables and the setting of membership functions are not only related to the input variables but also to the character of classification disturbance and the classification results. Furthermore, the number of fuzzy rules is equal to the number of disturbance patterns. By using this method for disturbance classification, the membership function and design of fuzzy rules are directly related to the objective of classification, thus effectively reducing the complexity of the design process and yielding accurate classification results. The classification results of the simulation and measured data verify the feasibility and effectiveness of this method.

An adaptive Fuzzy Binarization (적응 퍼지 이진화)

  • Jeon, Wang-Su;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.485-492
    • /
    • 2016
  • A role of the binarization is very important in separating the foreground and the background in the field of the computer vision. In this study, an adaptive fuzzy binarization is proposed. An ${\alpha}$-cut control ratio is obtained by the distribution of grey level of pixels in a sliding window, and binarization is performed using the value. To obtain the ${\alpha}$-cut, existing thresholding methods which execution speed is fast are used. The threshold values are set as the center of each membership function and the fuzzy intervals of the functions are specified with the distribution of grey level of the pixel. Then ${\alpha}$-control ratio is calculated using the specified function and binarization is performed according to the membership degree of the pixels. The experimental results show the proposed method can segment the foreground and the background well than existing binarization methods and decrease loss of the foreground.

Finding Informative Genes From Microarray Gene Expression Data Using FIGER-test

  • Choi, Kyoung-Oak;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.707-711
    • /
    • 2007
  • Microarray gene expression data is believed to show the functions of living organism through the gene expression values. We have studied a method to get the informative genes from the microarray gene expression data. There are several ways for this. In recent researches to get more sophisticated and detailed results, it has used the intelligence information theory like fuzzy theory. Some methods are to add fudge factors to the significance test for more refined results. In this paper, we suggest a method to get informative genes from microarray gene expression data. We combined the difference of means between two groups and the fuzzy membership degree which reflects the variance of the gene expression data. We have called our significance test the Fuzzy Information method for Gene Expression data(FIGER). The FIGER calculates FIGER variation ratio and FIGER membership degree to show how strongly each object belongs to the each group and then it results in the significance degree of each gene. The FIGER is focused on the variation and distribution of the data set to adjust the significance level. Out simulation shows that the FIGER-test is an effective and useful significance test.

Comparing object images using fuzzy-logic induced Hausdorff Distance (퍼지 논리기반 HAUSDORFF 거리를 이용한 물체 인식)

  • 강환일
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • In this paper we propose the new binary image matching algorithm called the Fuzzy logic induced Hausdorff Distance(FHD) for finding the maximally matched image with the query image. The membership histogram is obtained by normalizing the cardinality of the subset with the corresponding radius after obtaining the distribution of the minimum distance computed by the Hausdroff distance between two binary images. in the proposed algorithm, The fuzzy influence method Center of Gravity(COG) is applied to calculate the best matching candidate in the membership function described above. The proposed algorithm shows the excellent results for the face image recognition when the noise is added to the query image as well as for the character recognition.

  • PDF

An Intelligent Self Health Diagnosis System using FCM Algorithm and Fuzzy Membership Degree (FCM 알고리즘과 퍼지 소속도를 이용한 지능형 자가 진단 시스템)

  • Kim, Kwang-Baek;Kim, Ju-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • This paper shows an intelligent disease diagnosis system for public. Our system deals with 30 diseases and their typical symptoms selected based on the report from Ministry of Health and Welfare, Korea. Technically, the system uses a modified FCM algorithm for clustering diseases and the input vector consists of the result of user-selected questionnaires. The modified FCM algorithm improves the quality of clusters by applying symmetrically measure based on the fuzzy theory so that the clusters are relatively sensitive to the shape of the pattern distribution. Furthermore, we extract the highest 5 diseases only related to the user-selected questionnaires based on the fuzzy membership function between questionnaires and diseases in order to avoid diagnosing unrelated disease.

  • PDF

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier (퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습)

  • Tian, Xue-Wei;Lim, Joon S.
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers are a powerful and well-known type of classifiers that can be easily induced from a dataset of sample cases. However, the strong conditional independence assumptions can sometimes lead to weak classification performance. Normally, naive Bayesian classifiers use Gaussian distributions to handle continuous attributes and to represent the likelihood of the features conditioned on the classes. The probability density of attributes, however, is not always well fitted by a Gaussian distribution. Another eminent type of classifier is the neuro-fuzzy classifier, which can learn fuzzy rules and fuzzy sets using supervised learning. Since there are specific structural similarities between a neuro-fuzzy classifier and a naive Bayesian classifier, the purpose of this study is to apply learning distribution graphs constructed by a neuro-fuzzy network to naive Bayesian classifiers. We compare the Gaussian distribution graphs with the fuzzy distribution graphs for the naive Bayesian classifier. We applied these two types of distribution graphs to classify leukemia and colon DNA microarray data sets. The results demonstrate that a naive Bayesian classifier with fuzzy distribution graphs is more reliable than that with Gaussian distribution graphs.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.