• 제목/요약/키워드: fuzzy membership function distribution

검색결과 33건 처리시간 0.027초

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

퍼지 클러스터링을 이용한 확률분포함수 기반의 다중문턱값 선정법 (Selection Method of Multiple Threshold Based on Probability Distribution function Using Fuzzy Clustering)

  • 김경범;정성종
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.48-57
    • /
    • 1999
  • Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.

  • PDF

Comparison of Fuzzy Classifiers Based on Fuzzy Membership Functions : Applies to Satellite Landsat TM Image

  • Kim Jin Il;Jeon Young Joan;Choi Young Min
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.842-845
    • /
    • 2004
  • The aim of this study is to compare the classification results for choosing the fuzzy membership function within fuzzy rules. There are various methods of extracting rules from training data in the process of fuzzy rules generation. Pattern distribution characteristics are considered to produce fuzzy rules. The accuracy of classification results are depended on not only considering the characteristics of fuzzy subspaces but also choosing the fuzzy membership functions. This paper shows how to produce various type of fuzzy rules from the partitioning the pattern spaces and results of land cover classification in satellite remote sensing images by adopting various fuzzy membership functions. The experiments of this study is applied to Landsat TM image and the results of classification are compared by fuzzy membership functions.

  • PDF

Relationship Among h Value, Membership Function, and Spread in Fuzzy Linear Regression using Shape-preserving Operations

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.306-311
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

On relationship among h value, membership function, and spread in fuzzy linear regression using shape-preserving operations

  • Hong, Dug-Hun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.306-310
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

  • PDF

NEW RANKING AND NEW ALGORITHM FOR SOLVING DUAL HESITANT FUZZY TRANSPORTATION PROBLEM

  • K. HEMALATHA;VENKATESWARLU. B
    • Journal of applied mathematics & informatics
    • /
    • 제42권5호
    • /
    • pp.1077-1090
    • /
    • 2024
  • In this study, a dual hesitant uncertain setting is employed to study the transportation issue. The dual hesitant fuzzy set handles ambiguous, unreliable, or inaccurate data as well as conditions in real-world practical research queries that are impossible or difficult to solve according to current fuzzy uncertainties. The dual hesitant fuzzy set (DHFS) is composed of a membership hesitant function as well as a non-membership hesitant function. In this investigation, we developed a new scoring formula for converting dual hesitant fuzzy numbers (DHFNs) to crisp values and suggested a novel algorithm called contraharmonic mean for addressing the dual hesitant fuzzy problem of transportation. Excel solver is utilized to find the contraharmonic mean. Additionally, we employed the modified distribution (MODI) method to achieve the best possible result. The recommended approach is then explained using a mathematical instance, and its efficacy can be demonstrated by comparing it to previously used techniques.

자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출 (Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection)

  • 임준식
    • 인터넷정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.125-132
    • /
    • 2007
  • 본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)을 이용하여 심전도(ECG) 신호로부터 조기심실수축(premature vedtricular contractions, PVC)을 자동 탐지하는 방안을 제시하고 있다. NEWFM은 MIT-BIH 데이터베이스의 부정맥 심전도를 웨이블릿 변환(wavelet transform, WT)한 계수로부터 학습하여 정상 파형과 PVC 파형을 구분한다. 비중복면적 분산 측정법을 적용하여 중요도가 가장 높은 웨이블릿 변환의 d3과 d4의 8개 계수를 추출하였다. 이들 특징입력을 3개의 실험군에 사용하여 각각 99.80%, 99.21%, 98.78%의 신뢰성 있는 전체분류율을 나타내었고, 이는 각 실험군에 대한 특징입력의 종속성이 적음을 보여준다. 추출된 8개 계수의 ECG 신호 구간과 퍼지소속함수를 제시함으로써 특징입력에 대한 명시적인 해석을 가능하게 하였다.

  • PDF

퍼지기반 공간통합에 의한 제주도의 지열 부존 잠재력 탐사 (Geothermal Potential Mapping in Jeju Island Using Fuzzy Logic Based Data Integration)

  • 백승균;박맹언
    • 대한원격탐사학회지
    • /
    • 제21권2호
    • /
    • pp.99-111
    • /
    • 2005
  • 제주도의 지열 부존 가능지역을 추출하기 위하여 최근 활발하게 제안되고 있는 퍼지이론에 기반한 GIS 통합기법을 적용함으로써 그 효용성을 검토하였다. 지질도, 수계 분포 밀도, 분석구 분포 밀도, 선구조 분포 밀도, 항공자력도, 항공방사능도 등 각 주제도의 통계적 상관관계 분석을 위해 퍼지소속함수(Fuzzy membership function)를 그래프에 도시하였다. 현재 온천 발견 위치와 상관성은 용암류의 분출시기가 오래될수록 높았다. 수계, 분석구 및 선구조에서는 분포밀도가 낮은 곳에서 상관성이 높게 나타났으며, 항공자력도와 항공방사능도에서는 대자율 및 감마선 강도가 중간 범위인 곳에서 상관성이 높은 것으로 나타났다. 퍼지 연산자 중에서는 $\gamma$ 연산자($\gamma$=0.75)가 가장 높은 성공 비율을 보였으며, 제주도 서북부 일부지역에서 새로운 지열 부존 가능성이 제기되었다.

A Study on the Fuzzy-Bayes Method

  • Kyeoi, Tae-Hwa;Sohn, Joong-Kweon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we study and examine the sensitivity of the fuzzy-Bayes method whose properties are relatively not known much. Two fuzzy conditions and two actions are considered. Also some normal distributions and uniform distributions are assumed as a prior distribution for a parameter in the fuzzy-Bayes method.

  • PDF

Quantification of Plant Safety Status

  • Cho, Joo-Hyun;Lee, Gi-Won;Kwon, Jong-Soo;Park, Seong-Hoon;Na, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.431-439
    • /
    • 1996
  • In the process of simplifying the complex fate of the plant into a binary state, the information loss is inevitable. To minimize the information loss, the quantification of plant safety status has been formulated through the combination of the probability density function arising from the sensor measurement and the membership function representing the expectation of the state of the system. Therefore, in this context, the safety index is introduced in an attempt to quantify the plant status from the perspective of safety. The combination of probability density function and membership function is achieved through the integration of the fuzzy intersection of the two functions, and it often is not a simple task to integrate the fuzzy intersection due to the complexity that is the result of the fuzzy intersection. Therefore, a methodology based on the Algebra of Logic is used to express the fuzzy intersection and the fuzzy union of the arbitrary functions analytically. These exact analytical expressions are then numerically integrated by the application of Monte Carlo method. The benchmark tests for rectangular area and both fuzzy intersection and union of two normal distribution functions have been performed. Lastly, the safety index was determined for the Core Reactivity Control of Yonggwang 3&4 using the presented methodology.

  • PDF