• Title/Summary/Keyword: fuzzy logic model

Search Result 698, Processing Time 0.025 seconds

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

VLSI Implemtntations of Fuzzy Logic

  • Grantner, Janos;Patyra, Marek J.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.781-784
    • /
    • 1993
  • Most linguistic models of processes or plants known are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show two models for synchronous finite state machines (FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-Output (CSFO FSM) and Fuzzy-State-Fuzzy Output (FSFO FSM). As a result of the introduction of the FSM models, the improved architectures for fuzzy logic controller have been defined. These architectures featuring pipelined intelligent fuzzy controller are discussed in terms of dimensionality of the model. VLSI integrated circuit implementation issues of the fuzzy logic controller are also considered. The presented approach can be utilized for fuzzy controller hardware accelerators intended to work in the real-time environment.

  • PDF

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

A METHOD OF DEVELOPING SOFT SENSOR MODEL USING FUZZY NEURAL NETWORK

  • Chang, Yuqing;Wang, Fuli;Lin, Tian
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.103-109
    • /
    • 2001
  • Soft sensor is an effective method to deal with the estimation of variables, which are difficult to measure because of the reasons of economy or technology. Fuzzy logic system can be used to develop the soft sensor model by infinite rules, but the fuzzy dividing of variable sets is a key problem to achieve an accurate fuzzy logic model, In this paper, we proposed a new method to develop soft sensor model based on fuzzy neural network. First, using a novel method to divide the variable fuzzy sets by the process input and output data. Second, developing the fuzzy logic model based on that fuzzy set dividing. After that, expressing the fuzzy system with a fuzzy neural network and getting the initial soft sensor model based FNN. Last, adjusting the relative parameters of soft sensor model by the BP learning method. The effectiveness of the method proposed and the preferable generalization ability of soft sensor model built are demonstrated by the simulation.

  • PDF

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

A study on the fuzzy logic control for boiler-turbine system (보일러 터빈 플랜트의 퍼지 논리 제어에 관한 연구)

  • 김호동;김용호;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.687-692
    • /
    • 1991
  • To reduce the complexity in constructing a fuzzy logic controller of multivariable systems, three major methods are presented. One is the method of constructing single-input-single-output fuzzy logic controllers after decoupling the target system. Another is the method of using fuzzy relation matrices which indicate the relation between each input and output. The other is the method of using the hierarchically classified inputs which dominantly influence one output than other inputs. Using the last two methods, simulation results of fuzzy logic controller implemented on 160MW boiler-turbine plant model are also shown.

  • PDF

A Probabilistic Fuzzy Logic Approach to Identify Productivity Factors in Indian Construction Projects

  • Princy, J. Darwin;Shanmugapriya, S.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.39-55
    • /
    • 2017
  • Preeminent performance of construction industry are unattainable with poor productivity resulting in time and cost over runs. Enhancement in productivity cannot be achieved without identifying and analyzing factors that adversely affect productivity. The objective therefore is to propose a productivity analysis model to quantify the probability of effect of factors influencing productivity by using fuzzy logic incorporated with relative importance index method, for various types of construction projects. To achieve this objective, a questionnaire survey was carried out targeting respondents of Indian construction industry, from four distinct projects, namely, residential, commercial, infrastructure and industrial projects. Based on questionnaire administered, the relative importance and ranks of factors demonstrated using relative importance index method. Probability assessment model to analyze productivity was then developed by using Fuzzy Logic Toolbox of MATLAB. The applicability of the proposed model was tested in seven construction projects and the probability of impact of factors on productivity evaluated. The results of application of model in the construction firms infers that the most contributing factor groups for most of the projects were discerned to be manpower, motivation and time group.

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.