Fifth IFSA World Congress (1993), 781-784

VLSI Implementations of Fuzzy Logic

Finite State Machines

Janos Grantner! and Marek J. Patyra®

1 Department of Process Control, Technical University of Budapest, Budapest, 1111 Hungary
2 Department of Computer Engineering, University of Minnesota, Duluth, MN 55812, USA

ABSTRACT: Most linguistic models of processes or plants
known are essentially static, that is, time is not a parameter in
describing the behavior of the object's model. In this paper we
show two models for synchronous finite state machines
(FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-
Output (CSFO FSM) and Fuzzy-State-Fuzzy-Output (FSFO
FSM). As a result of the introduction of the FSM models, the
improved architectures for fuzzy logic controller have been
defined. These architectures featuring pipelined intelligent
fuzzy controller are discussed in terms of dimensionality of
the model. VLSI integrated circuit implementation issues of
the fuzzy logic controller are also considered. The presented
approach can be utilized for fuzzy controller hardware accel-
erators intended to work in the real-time environment.

1. FUZZY LOGIC FINITE STATES MACHINES

The general model of a finite state machine (FSM) is illus-
trated in Figure 1. Formally, a sequential circuit is specified
by two sets of Boolean logic functions: fz (X, y) — Z, and ty
(X, y) = Y; where X, Z, y, and Y stand for a finite set of
inputs, outputs, the present and next states of the state vari-
ables, respectively. Function f; maps the inputs and the
present state of the state variables to the outputs, and function
fy maps the inputs and the present state of the state variables
to the next state of the state variables.

X : Z=1, (X : Z
H \ =, Xy) : g
vl / Ty

Y= Xy)

<

Memory
elements

B

Figure 1 General Model of a Finite State Machine (FSM).
The current states of the memory clements hold information
on the past history of the circuit. The behavior of a synchro-
nous sequential circuit can be defined from the knowledge of
its signals at discrete instants of time. Those time instants are
determined by a periodic train of clock pulses. The memory

—781

elements hold their outputs until the next clock pulse arrives.
We extended this model [2] by introducing membership func-
tions and fuzzy relations to map the changes which take place
in fuzzy input data to both the fuzzy outputs and next state of
the state variables. The definition of states remain crisp, that
is, the state of the system can be represented in one of the
usual ways (i.e. by isolated flip-flops, registers or a micropro-
grammed control unit). The fuzzy outputs are devised from a
dynamically changing linguistic model since the response to a
specific change at the fuzzy input will vary with different
states of the FSM. We are refer to this model as Crisp-State-
Fuzzy-Output FSM or CSFO FSM. A block diagram of the
CSFO FSM is shown in Figure 2. X and Z stand for a finite set
of fuzzy inputs and outputs, respectively.

S . ———
x R Z = XOR(y) B Z
— z.=DF(Z) [— >
s 4 e
. XB =B(X)
Y DY
Y= fy (Xg.y)
Memory |
clements

-

Figure 2 General Modet of the Crisp-State-Fuzzy-Output Finite
State Machine (CSFO FSM).

R stands for the object's model which is now function of the y
present state of the state variables, and “0” is the composition
operator. The z¢ crisp values of the fuzzy outputs are obtained
by applying the defuzzification strategy DFE. B stands for the
transformation which maps the linguistic values of the X lin-
guistic (fuzzy) variables to the XB Boolean (two-valued)
logic variables. Function fy maps both the XB Boolean logic
variables and the y present state variables to the Y next state
of the state variables. The object (linguistic) model R and the
input variables X are used to derived the fuzzy outputs Z and
the next state of the state vaniables. The fuzzy outputs Z are
obtained from dynamically changing linguistic model R,
since the response to the specific change of the fuzzy input X
is not the same in different states of the CSFO FSM.

It is possible to extend the introduced CSFO FSM model even
further. Hence, the Fuzzy-State-Fuzzy-Output finite state

ma;ihine is proposed (FSFO FSM). In this case the machine’s
state is represented by a fuzzy state, which can be defined by a
fuzzy number. ’)

x> Z=XOR(y) >,
— > 2. = DF(Z) ——
y i Y=1y(X.y) Py

Fuzzy %
Memory
Elements

Figure 3 General Model of the Fuzzy-State-Fuzzy-Output Finite
State Machine (FSFO FSM).

Now, fuzzy outputs are derived from fuzzy input variables X

and present state of the state variables (fuzzy). Variables yg

and YF representing the present and the next state of the fuzzy

state variable are stored in the fuzzy memory elements (Fig-
ure 3). FSFO FSM model can be implemented using CSFO
FSM and the additional memory storing the State Member-
ship Functions (SMF) (Figure 3). With the FSFO FSM it can-
not be said that the system is in a particular crisp state, rather
it is some different states simultaneously. Each state is occu-
pied to a certain degree defined by the SMF. Thus the FSFO
FSM can be considered as a general class of Fuzzy Logic
Finite State Machines based on two-valued logic.

x - » Z = XO0R* F—»
: » R* = G(Rs) .
2. = DF(Z) <
SMF [< —> 2
Memory]: Xg =BX) s
y Y =fy (X8, ¥)

Memory |
Elements

Figure 4 The Model of FSFO FSM implemented using CSFO
FSM and SME

In Figure 4 the R* stands for the composite linguistic model in

a given fuzzy state and it is derived from all overall rules of
the CSFO FSM by means of State Membership Functions.

2. FUZZY MODEL

A linguistic model of a process can be built using a special-
ized software; fuzzy inference and defuzzification strategies
can also be computed without using any dedicated hardware.
However, in the case of real-time control applications, the
pure software approach may not offer sufficient performance.
Later we discuss a hardware accelerator for a fuzzy logic con-
troller. The accelerator is based upon the mathematical model
of fuzzy inferencing. Three variants of such model are dis-
cussed below.

The process operation control strategy is created by analysis
of input and output values, in which not only measurable
quantities are taken into account but also parameters which
cannot be measured, only observed [1]. On the basis of the
verbal description, which is called a linguistic model, a fuzzy
relation R is created:

N
R= * (XI-YI)
I=1

In this -formula — denotes the operation or operations by
which fuzzy implications are defined, and the symbol * repre-
sents an operation which can be interpreted as the sentence
connective ALSO. We shall present the algorithm not only
intended for creating a fuzzy model when a verbal description
is given, but also for determining the model's answer to a
given input [2]. The verbal description of the process contains
N relations, and fuzzy sets describe the particular states which
occur in the verbal description of inputs X'/, X, and X
and output Z be given by:

Ri: FxP1s . xP1y anp x@ 15 .. x®y... anp x™ s .
™1 THEN Z 15 ... Z1)

Ry: EXV 15 Py anD xP 15 . x®ny.. anp x™ 15 .

(X(M)N) THENZ1S ... (ZN).
Let us now review some major aspects of fuzzy inference for
different model dimensions.

A. Single-Input-Single-Output
Fuzzy Learning
A method of creating fuzzy relation Ry which represents the
first fuzzy implication in the verbal description is interpreted
as intersection. The remaining relations Ry, R,..., Ry are cre-
ated analogously by application of the same definition of
fuzzy implication.
Ry = X1xZ1 (EQ1)
V(uw)eUxW Ry(u,w) = min (X1(u), ZL(w)) (EQ2)
The final relation R (being the object's model) is obtained as
the union of Ry, Rj...., Ry, since the sentence connective
ALSO is defined as union:
R = R{URyuU..URy (EQ3)
V(uw)e UXW R(u,w)= max{Rj(u,w), Ro(u,w),..., RN(u,w)] (EQ 4)
Fuzzy Inference
The method of creating fuzzy answer Z to a fuzzy input X is to
apply max-min composition.
VweW Z(w) = max [min(X(u), R(u,w))]
B. Double-Input-Single-Output
The inputs are normalized into the same universe of discourse.
Fuzzy Learning

(EQ5)

A method of creating fuzzy relation R1 which represents the
first fuzzy implication can be derived by the decomposition of
the first rule into two parts:

RV = x1Pxz1 (EQ6)
and:

’;? = x1%Pxz1 (EQ7)
In the enhanced form (EQ 6) and (EQ 7) can be rewritten as:

Ry Btu, w) = minx1Dw) xz1w)) (EQS)

1P) xz1(w)) (EQ9y
The remaining relations Ry, Rj,..., Ry are created analogously
by application of the same decomposition technique. The
overall rule for the X) and Z is then given by:

R;Pu, w) = min(x

RV =R D UR, P 0o ry® (EQ10)
and for X(z) and Z by:
R(Z) = Rl(z) U R2(2) UU RN(Z) (EQ11)

The enhanced forms of (EQ 6) and (EQ 6) are given below:

—782—

(EQ12)
(EQ13)

R(l)(u, w) = max{Rl(l)(u, wiu L RN(D(u, w)}

RP(u, w) = max(R;P(u, w) U ..o Ry, W)

As a result two overall rules coexists in this model.
Fuzzy Inference

Having two overall rules the model output can be obtained us-
ing the min-superposition of two relations: input X and rule R:

z=minixM 6 RW)y, (x@ 5 gDy (EQ 14)
C. Multiple-Input-Single-Output
Fuzzy Learning

It is assumed thar. the first and following rules can be decom-
posed into M separate subrules as follows: (for the first rule)

R’ =x1z1 (EQ 15)

R™ - xiMyzy (EQ16)

In the enhanced form (EQ 6) through (EQ 7) can be rewritten
as:

Ry P, w) = min(x10 vy xz1(w)) (EQ17)
R M, w) = minx1™w) xz1(w)) (EQ18)
for the Nth rule:

Ry = x1Pxz1 (EQ19)
Ry = xiMz1 (EQ20)

The overall rule for the X and Z is then given by:
R(l) = Rl(l) v Rz(l) [CRNY) RN(D (EQ21)
RM g ™M g, M (o Ry (EQ22)

The enhanced forms of (EQ 6) through (EQ 6) are given be-
low:

RV, wy= maxiR Py, wy o .o RyPu,w) EQ29)
R™u, w) = max(R ™M, wy u .o Ry™

Fuzzy Inference

(uw) (EQ24)
In this case the model output can be obtained using the min-
superposition of all M relations: input X% and rule R®:

Z = minxM o kD), ..., xM) o M)y, (EQ 25)
In each state of the CSFO FSM just one R overall rule mem-
ory is selected, there are s instances of R total for s states with
the SISO configuration. With the DISO controller, a pair of
R(1) and R(2) overall rule memories are assigned to each
state, and finally, in the MISO case, a set of R(1), ..., R(M)
rule memories belongs to each state. Due to a compact imple-
mentation of the knowledge base, the memory requirement of
storing a R overall rule is about 1/4 kilobyte with the digitized
membership function employed [6]. The rule memory need
of the FSFO FSM model is the same as that of the CSFO FSM
one.

D. Defuzzification Strategy

The defuzzification strategy is common for all described ver-
sions of the fuzzy model. The z, deterministic value of the
answer (crisp value) is determined using the formula:

L
zZ,=2Fw (EQ 26)
J=1

-

where L is the rumber of points wye W in which output set Z
reaches 2 maximum.

3. FUZZY-TO-BOOLEAN MAPPING (B) ALGORITHM
The general form of the B algorithm can be used to convert
either fuzzy inputs or outputs to sets of Boolean variables.
The mapping of a single fuzzy input X to a set of Boolean

input variables XB is illustrated in Figure 5.
% (1) o X2
1

I T N B 1 D R |

Xe1 XB2 Xp3 XB4 XBs XBs XB?7 XBs XB9 XpioXsmi1 Xsi2 XBi3

Figure S Mapping of fuzzy input X to a st of Boolean input
variables Xp.

The universe of discourse is broken up into k overlapping
sub-intervals where k is the number of linguistic values.
These linguistic sub-intervals are mapped to n disjoint sub-
intervals associated with Boolean variables where n = 2k-1. A
Boolean input variable Xpg;=1 if the position of the input max-
imum falls into Boolean sub-interval i (i=1,..., 2k-1), and all
other Xpg;=0 (j #1i, j=1...., 2k-1). In case of the MISO model,
multiple sets of Boolean inputs are created. The state tran-
sients of either the CSFO or the FSFO FSM models can be
specified in terms of a sequence of changes at the Xg Boolean
inputs.

4. HARDWARE IMPLEMENTATION

The hardware accelerator which performs the fuzzy learning,
fuzzy inference, and defuzzification computation, that is,
which maps the fuzzy inputs to fuzzy and/or crisp outputs, is
summarized in this section. A SISO CSFO FSM model is
assumed for further discussions and just the active overall rule
memory section of the whole knowledge base will be shown.
The accelerator consists of four basic units: the interface, the
Fuzzy-to-Boolean mapping unit, the combined fuzzy model/
fuzzy inference unit, and the defuzzifier unit. The last two are
referred to as the fuzzy engine [6]. The functional block dia-
gram of the accelerator is shown in Figure 6. To achieve a
high processing rate for real time applications, the units are
connected in a four-level pipeline.

Host Interface Imerface Control
Unit Unit

PL1} Register

Puzzy-10-Boolean

Tt
nit

Puzzy

Model Engine

Puzzy Inference Corurol
Unit Unit

PL3 Register

Defuzzifier
Unit

Figure 6 Pipeline Architecture of the Hardware Accelerator.

The core of the hardware accelerator is a fuzzy engine which
implements the equations (EQ 2), (EQ 5), and (EQ 26). It is
split into the fuzzy model/fuzzy inference unit and the defuzz-
ifier unit. The functional block diagram of the fuzzy model/
fuzzy inference unit (without increased parallelism) is shown

—783—

in Figure 7.

| PL2 Ragister || PL1 Register |

| xeregmer | [;1 Regiries |
]
[Muxxi 1 L‘ [ST © S———

l Minimumn Zero
Veclor
Rule
MUX 3 Memory
Masiman

v]
| rRegswr J[Y Reginer |

Figure 7 Schematic Diagram of the Fuzzy Model/Inference Unit.
Contents of the R rule memory remain unchanged during the
fuzzy inference process. After the last clock step, register Y
holds the result of the XoR operation in the digitized fuzzy
data format. To detect whether the condition: V(u,w)e UxW,
R(u,w) = 1 is met, an error flag was added to the fuzzy engine.
Due to the linear property of the max-min composition, by
quadrupling the functional units of the basic architecture, the
time required to complete the pipeline steps for either the
fuzzy learning or the fuzzy inference process can be reduced
to [umax+ 4]+ 2 clock periods. Since the precedence relation
of the subtasks (I/O data transfer (T]), the pre-processing of
the multiple fuzzy inputs (T2), the learning of a new rule or
the performing a fuzzy inference operation (T3), and the
defuzzification (T4)) are all linear operations, the four basic
units of the hardware accelerator form a linear pipeline. The
pipeline architecture allows the simultaneous operation of the
four units.

The defuzzifier unit performs the defuzzification operation.
Finding both the maximum and its position takes at most 4
clock periods. Two parallel adder networks are used to sum up
the position codes of the maximum and obtain the total num-
ber of maximum simultaneously. Then, the crisp value is
taken from the look-up table. If maximum value is zero then
the crisp value is flagged.

5. VLSI IMPLEMENTATION ISSUES

Although fuzzy logic has been successfully applied to control
problems over the last 10 years, extensive integrated circuits
implementations of fuzzy logic circuits have yet to be
cxpected. Few interesting approaches to the implementation
of fuzzy logic circuits have been published recently: [4], (8],
and [9].

There are two possible versions of the fuzzy logic controller
that could be useful in most practical implementations: a con-
troller working stand alone (SA), or with an appropriate host
computer (HC). These options will be taken into consider-
ation.

Let us discuss the VLSI implementation issues in more detail.
We assume that the proposed fuzzy controller will have three
basic cycles of operation: fuzzy learning, fuzzy inference and
stand-by. In case of the fuzzy learning and fuzzy inference
operations the HC version will be supplied with fuzzy data

through the host computer which performs the fuzzification of
the analog inputs. It is obvious that HC version will be able to
process only digital representation of the fuzzy data prepared
by the host computer.

The SA version of the VLSI implementation will input the
analog data and perform the fuzzification operation by itself.
The stand-by mode will be common for both versions. There
are other several vertsion-specific implementation issues
which are discussed more elaboratively in [2].

6. CONCLUSIONS

The general model for fuzzy state machine used to formulate
fuzzy controllers for event-driven real-time systems is
described. An improved architecture for fuzzy logic controller
is defined based on the introduced Crisp-State-Fuzzy-Output
Finite State Machine (CSFO FSM). The defined architecture
provides a novel strategy for fuzzy model building enabling
fuzzy inferences to be performed in a single stage of a hard-
ware accelerator, an ability not common to previously pub-
lished architectures. The Fuzzy-State-Fuzzy-Output Finite
State Machine (FSFO FSM) is introduced as an extension to
the CSFO FSM. These proposed architecture for the fuzzy
controller hardware accelerator, appropriately pipelined,
reaches the speed of at least few M FLIPS and have the ability
to work in a real time environment. The VLSI Implementation
issues of a proposed architecture are discussed.

7. REFERENCES

[1] FC 110 Digital Fuzzy Processor DFPTM, Togai Infral.ogic,
Inc., October 1991.

[2] J. Grantner, M. Patyra, and M. Stachowicz, “Architecture for
Event-Driven Intelligent Fuzzy Logic Controller “, Proceed-
ings of IEEE International Conference on Fuzzy Systems,
San Francisco, CA, pp. 273-278, March/April 1993,

{3] ML.J. Patyra, “VLSI Implementation of Fuzzy-Logic Circuits”,

International Fuzzy Systems Association World Congress,

Brussels, Belgium, June 1991.

M.Sasaki, F.Ueno, and T.Inoue, “7.5MFLIPS Fuzzy Micropro-

cessor Using SIMD and Logic-in-Memory Structure”, Proceed-

ings of IEEE International Conference on Fuzzy Systems,

San Francisco, CA, pp.527-534, March/April 1993,

M. Stachowicz, J.Grantner, L. Kinney, “Two-Valued Logic for

Linguistic Data Acquisition”, NAFIPS Workshop ‘91, Univer-

sity of Missouri-Columbia, pp. 168-172, May 14-17, 1991.

M. Stachowicz, J.Grantner, L. Kinney, “Pipeline Architecture

Boosts Performance of Fuzzy Logic Controller”, IFSICC'92

International Fuzzy Systems and Intelligent Control Confer-

ence, Louisville, Kentucky, March 15-18, pp. 190-198, 1992.

M. Togai, H. Watanabe, “Expert System on a Chip: An Engine

for Real-Time Approximate Reasoning”, IEEE Expert, pp. 55-

62, Fall 1986.

A .Ungering, K.Thuener, and K.Goser, “Architecture of a PDM

VLSI Fuzzy Logic Controller with Pipelining and Optimized

Chip Area”, Proceedings of IEEE International Conference

on Fuzzy Systems, San Francisco, CA, pp. 447-452, March/

April 1993

[91 H.Watanabe, W.Dettloff, K.Yount, “A VLSI Fuzzy Logic Con-
troller with Reconfigurable, Cascadable Architecture”, IEEE
Journal of Solid-State Circuits, vol. 25, pp. 376-381, 1990,

[10] L.Zadeh, “A Fuzzy Algorithmic Approach to the Definition of
Complex or Imprecise Concepts”, International Journal Man
Machine Studies, vol. 8, pp. 249-291, 1976.

{4

—

[5

[udh)

{6

—

[7

—_—

8

—_

~784

