• 제목/요약/키워드: fuzzy logic inference system

검색결과 196건 처리시간 0.029초

기호다치논리를 이용한 Fuzzy Rule Minimization에 관한 연구 (A Study on the Minimization of Fuzzy Rule Using Symbolic Multi-Valued Logic)

  • 김명순
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.1-8
    • /
    • 1999
  • 인간의 사고 방법과 그 원리를 연구하는 논리에서 이진 논리는 True 혹은 False 중 하나만을 진리값으로 갖는 명제를 다룬다. 인간이 다루는 대부분이 기존의 이치논리는 다루기 힘든 애매성(Fuzziness)을 포함하고 있음에도 불구하고 이를 표현하는 지식은 부정확하며 신뢰성은 떨어지게 된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 다치 논리를 사용하였으며, 다치 논리는 2치 논리에 비하여 동일정보량을 처리하는데 고속 처리가 가능한 장점을 가지고 있다. 그래서 2치 부호화를 기본으로한 정보시스템에 비해 다치 부호화 알고리즘을 사용하여 구성하는 기호다치논리를 사용하여 Fuzzy Inference에서 사용되는 Fuzzy Rule을 효과적으로 Minimization하여 추론이 가능하도록 하는 것이다.

  • PDF

퍼지추론을 이용한 전동기구동 펌프시스템의 고장진단 (Fault Diagnosis of motor driven pump system based on fuzzy inference)

  • 조윤석;류지수;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.689-691
    • /
    • 1995
  • In this paper, a fault detection and isolation unit(FDIU) for a centrifugal pump system driven by DC-motor is proposed. The proposed scheme can be classified into the dedicated observer scheme(DOS). A fuzzy logic based inference engine is adopted for the isolation of each faults. Having the fuzzy inference engine, the proposed FDIU resolve a few important problems of the conventional DOSs with conventional two valued logic. The ouputs of the proposed FDIU are not "ith fault occurred" but the grade of memberships that indicate the consistency of observered symptoms(residuals) with each fault symptoms stored in the rule base. The ouputs can easily be transferred to the ranking of the fault possibilities and it will provide very useful informations in monitoring the process. The simulation results show that the FDIU has very good diagnostic ability even in the noisy environment.

  • PDF

제어규칙 분해법을 이용한 다변수 퍼지 논리 제어기 (Multivariable Fuzzy Logic Controller using Decomposition of Control Rules)

  • 이평기
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.173-178
    • /
    • 2006
  • For the design of multivariable fuzzy control systems decomposition of control rules is a efficent inference method since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper we define indices of applicability which decides whether the decomposition method can be applied to a multivariable fuzzy system or not.

  • PDF

A Study on the Neuro-Fuzzy Control and Its Application

  • So, Myung-Ok;Yoo, Heui-Han;Jin, Sun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.228-236
    • /
    • 2004
  • In this paper. we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feed forward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand. feed forward neural networks provide salient features. such as learning and parallelism. In the proposed neuro-fuzzy controller. the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error back propagation algorithm as a learning rule. while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally. the effectiveness of the proposed controller is verified through computer simulation for an inverted pole system.

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

퍼지-PID 알고리즘을 이용한 필라멘트 와인딩 장력제어에 관한 연구 (A Study on Filament Winding Tension Control using a fuzzy-PID Algorithm)

  • 이승호;이용재;오재윤
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.30-37
    • /
    • 2004
  • This thesis develops a fuzzy-PID control algorithm for control the filament winding tension. It is developed by applying classical PID control technique to a fuzzy logic controller. It is composed of a fuzzy-PI controller and a fuzzy-D controller. The fuzzy-PI controller uses error and integrated error as inputs, and the fuzzy-D controller uses derivative of error as input. The fuzzy-PI controller uses Takagi-Sugeno fuzzy inference system, and the fuzzy-D controller uses Mamdani fuzzy inference system. The fuzzy rule base for the fuzzy-PI controller is designed using 19 rules, and the fuzzy rule base for the fuzzy-D controller is designed using 5 rules. A test-bed is set-up for verifying the effectiveness of the developing control algorithm in control the filament winding tension. It is composed of a mandrel, a carriage, a force sensor, a driving roller, nip rollers, a creel, and a real-time control system. Nip rollers apply a vertical force to a filament, and the driving roller drives it. The real-time control system is developed by using MATLAB/xPC Target. First, experiments for showing the inherent problems of an open-loop control scheme in a filament winding are performed. Then, experiments for showing the robustness of the developing fuzzy-PID control algorithm are performed under various working conditions occurring in a filament winding such as mandrel rotating speed change, carriage traversing, spool radius change, and reference input change.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크 (Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

An Expert System for the Fault Diagnosis of Hard Disk Drive Test System

  • Moon, Un-Chul;Kim, Woo-Kuen;Lee, Seung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2418-2423
    • /
    • 2005
  • Hard Disk Drive (HDD) test system is the equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD product line, KUMI, KOREA, and shows satisfactory results.

  • PDF

An Expert System for the Fault Diagnosis of Hard Disk Drive Test System

  • Moon, Un-Chul;Kim, Woo-Kuen;Lee, Seung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2424-2429
    • /
    • 2005
  • Hard Disk Drive (HDD) test system is the equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD product line, KUMI, KOREA, and shows satisfactory results.

  • PDF