• Title/Summary/Keyword: fuzzy logic approach

Search Result 398, Processing Time 0.029 seconds

Evolutionary Design of a Fuzzy Logic Controller for Multi-Agent Systems

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.507-512
    • /
    • 1998
  • It is an interesting area in the field of artificial intelligence to and an analytic model of cooperative structure for multi-agent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent co-operative behavior: A modified genetic algorithm was applied to automating the discovery of a fuzzy logic controller jot multi-agents playing a pursuit game. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to and the fuzzy logic controller seems to be promising.

  • PDF

VLSI Implemtntations of Fuzzy Logic

  • Grantner, Janos;Patyra, Marek J.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.781-784
    • /
    • 1993
  • Most linguistic models of processes or plants known are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show two models for synchronous finite state machines (FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-Output (CSFO FSM) and Fuzzy-State-Fuzzy Output (FSFO FSM). As a result of the introduction of the FSM models, the improved architectures for fuzzy logic controller have been defined. These architectures featuring pipelined intelligent fuzzy controller are discussed in terms of dimensionality of the model. VLSI integrated circuit implementation issues of the fuzzy logic controller are also considered. The presented approach can be utilized for fuzzy controller hardware accelerators intended to work in the real-time environment.

  • PDF

The Study of Gain Scheduled PD-like Fuzzy Logic Control : Application to High Maneuverable Aircraft

  • Hong, Sung-Kyung;Lee, Jung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.1-141
    • /
    • 2001
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) for a high maneuverable aircraft system, where the gains of FLC are on-line adapted according to the flight condition. Specially, the systematic procedure via root locus technique is carried out for the sellection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields better control performance than the normal (without gain scheduling) fuzzy controller.

  • PDF

Maximum Power Point Tracking using Double Fuzzy Logic Controller for Grid-connected Photovoltaic System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 MPPT제어를 위한 Double Fuzzy 제어기 설계에 관한 연구)

  • Kim, Kyu-Han;Kim, Hyung-Su;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.471-478
    • /
    • 2011
  • This paper proposes a method of maximum power point tracking (MPPT) using fuzzy logic control for grid-connected photovoltaic systems (PV). First, for the purpose of comparison, because of its proven and good performances, the incremental conductance (IncCond) technique is briefly introduced. A double fuzzy logic controller (DFLC) based MPPT is then proposed which has shown better performances compared to the IncCond MPPT based approach. Modeling and Simulation in grid-connected PV system results are provided for both controllers under same atmospheric condition based PSCAD/EMTDC. The double fuzzy logic MPPT controller is then simulated and evaluated, which has shown better performances.

Design of Sophisticated Self-Tuning Fuzzy Logic Controllers Using Genetic Algorithms (유전알고리즘을 이용한 정교한 자기동조 퍼지 제어기의 설계)

  • Hwang, Yon-Won;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.509-511
    • /
    • 1998
  • Design of fuzzy logic controllers encounters difficulties in the selection of optimized membership function and fuzzy rule base, which is traditionally achieved by tedious trial-and-error process. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm(GA). The controller design space is coded in base-7 strings chromosomes, where each bit gene matches the 7 discrete fuzzy value. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a do-servo motor control system. It was presented in discrete fuzzy linguistic value, and used a membership function with Gaussian curve. The performance of this control system is demonstrated higher than that of a conventional PID controller and fuzzy logic controller(FLC).

  • PDF

FAM APPROACH TO DESIGN A FUZZY CONTROLLER

  • Lo Presti, M.;Poluzzi, R.;Rizzotto, G.G.;Zanaboni, A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1033-1036
    • /
    • 1993
  • Most of the today realized fuzzy logic control applications has been designed using different heuristic approaches for synthesis and implemented with conventional programming languages on general purpose microcontrollers. This paper aims to present a new methodology to design a fuzzy controller. The methodology is based on the Cell-to-Cell approach to extract the control law. A set of fuzzy rules is then found by using a FAM (Fuzzy associative memories) approach. The proposed procedure was implemented to control the rotor position of a DC motor.

  • PDF

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.

Vehicle Traction Control System using Fuzzy Logic Theory (퍼지논리를 이용한 차량 구동력 제어 시스템)

  • 서영덕;여문수;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF