Proceedings of the 13"
KACC, October 1998

Evolutionary Design of a Fuzzy Logic Controller for

Multi-Agent Systems

II-Kwon Jeong and Ju-Jang Lee

Department of Electrical Engineering

Korea Advanced Institute of Science and Technology

373-1 Kusong-dong Yusong-gu Taejon 305-701 Korea
- Fax: +82-42-869-3410
Email: jik@odyssey.kaist.ac.kr

Abstract

It is an interesting area in the field of artificial intelli-
gence to find an analytic model of cooperative structure
for multi-agent system accomplishing o given task. Usu-
ally it is difficult to design controllers for multi-agent sys-

tems without a comprehensive knowledge about the system.

One of the way to overcome this limitation is to imple-
ment an evolutionary approach to design the controllers.
This paper introduces the use of a genetic algorithm to dis-
cover a fuzzy logic controller with rules that govern emer-
gent co-operative behavior. A modified genetic algorithm
was applied to automating the discovery of a fuzzy logic
controller for multi-agents playing a pursuit game. Sim-
ulation results indicate that, given the complexity of the
problem, an evolutionary approach to find the fuzzy logic
controller seems to be promising.

1 Introduction

Studying computational models of co-operative structures
accomplishing a given task is an interesting area in the
field of artificial life. However, generally it is difficult to
design such models by analysis. As the problem size grows,
it becomes more difficult. In the field of self-learning reac-
tive systems it is not even desirable to have a clear idea of
a computational model. Autonomous agents being adapt-
able implies an minimally pre-programmed systems. The
general aim is that agents learn to accomplish tasks by in-

teracting with the environment and adapt future behavior
on the basis of feedback from present (or past) action[1].

Patel and Maniezzo solved a soccer-playing agent prob-
lem using neural networks to control agents, and genetic
algorithms (GAs) to train the neural networks[l]. Lund
and Miglino also used a GA to evolve neural network con-
trollers for real robots[2]. They solved a rather simple
obstacle avoidance problem. Recently, it has been shown
that GAs are not suitable for training neural networks, and
most GA-based learning algorithms for neural networks
use hybridization of GAs and another calculus-based al-
gorithm (e.g. GA + BackPropagation)[3][4] or modified
GA specially designed for neural network training(5].

Genetic algorithms are search methods based on natural
selection and genetics. GAs are used in various problems
including control problems. In control area, the GA has
been used in identification, adaptation and neural network
controller([5][6][7][8]. Calculus-based search methods usu-
ally assume a smooth search space, and most of them use
the gradient following technique. The GA is different from
conventional optimization methods in several ways. The
GA is a parallel and global search technique that searches
multiple points so it is more likely to obtain the global
solution. It makes no assumption about the search space,
so it is simple and can be applied to various problems[9)].
It has been empirically proved that GAs are especially
suitable for solving combinatorial optimization problems.

Haynes and Sen presented several crossover mechanisms
in a genetic programming in order to reduce the timed

507

needed to evolve a good team(11]. Iba showed the emer-
gence of the cooperative behavior for the multiple agents
by means of genetic programming[12]. Lohn and Reg-
gia used GAs to discover automata rules that govern self-
replicating processes[10]. However, all these works were
done in a grid world. Lee et. al. applied a behavior-based
approach to design control systems of mobile robots using

genetic programming.

In this paper, we use a modified genetic algorithm
(MGA)[5] to discover a fuzzy logic controller that gov-
ern emergent co-operative behavior in a continuous world.
The genetic algorithm is applied to automating the discov-
ery of the fuzzy logic controller for multi-agents playing a
pursuit game. The paper is organized as follows. In sec-
tion 2, a pursuit model is described. In section 3, discov-
ery of the fuzzy logic controller using MGA is described.
Simulation results are provided in section 4.

2 Pursuit Model

A pursuit problem or predator-prey problem is a test bed
in distributed artificial intelligence (DAI) research to eval-
uate techniques for developing cooperation strategies. The
objective of an agent (predator) is catching a prey in coop-
eration with other agents. The problem domain is similar
to the effector automata (EA) model[10] except that the
domain in this paper is a continuous world. In the EA
model, a cellular space is defined where individual pro-
cessing units (automata or agents), operating in parallel,
receive input from their local neighborhood, and produce
an output using a pre-defined rule. Each cell is a loca-
tion in space, and agents (automata) are entities that can
occupy cells. The output in a pursuit model is an action
command to effect, such as moving or turning speed.

Time is discretized in the pursuit model due to the sam-
pling interval, and space is an two-dimensional square of
w (width) x ! (length). An agent is assumed to be a
two-wheeled mobile robot. It can move to anywhere in
the space. Each agent is represented by a symbol T;,
i = 1,2,---,n, indicating the ith agent, where n is the
number of agents. T, represents the prey. It is assumed
that all agents use identical rules, i.e. the homogeneous
strategy.

Fig. 1 shows a pursuit model with two agents and a

prey (in the center). It is assumed that each agent can
detect other objects (agents and the prey). An agent can
detect the distance and relative orientation of other agents.
The behavior of each agent is governed by a fuzzy logic
controller. It is the rule table that should be designed by
using a genetic algorithm in order to complete the fuzzy
logic controller. An entry of a rule table is a condition-
action rule of the form:

If6,is Aandrois Band 6, is C and ... and r, is D

and 6, is E and r,, is F' and 6, is G — action (1)

where 6; is the heading angle of the robot which is being
controlled. r; and 6;,7 = 2,3, - -+, n, represent the distance
between T} and T; and relative angle of T; with respect to
the heading angle of Ti, respectively. A, B,-.- are fuzzy

sets corresponding to each linguistic variables.

-
o

O

o =2 N W & O OO N o™ ©

Fig 1. A pursuit model

The actions possible for the pursuit model are changing
velocity and angular velocity. In this paper, the velocity
of an agent is assumed to be a constant. Therefore the
fuzzy logic controller only determines the angular velocity
of a robot.

We need a simulator for the pursuit model. The simu-
lator simulates the movements of agents and the prey ac-
cording to the fuzzy logic controller for a given time steps,
and scores the result. The simulation stops when the prey
is captured or the given time steps are over. When an
action or movement of an agent is outside the world the
simulator disables the action. A collision policy should be
specified to address the possibility of two or more agents
attempting to occupy the same region. Two example poli-
cies are mutual annihilation which results in all agents

508

being disabled to move, and the random winner policy
which randomly selects one agent to occupy the region in
question[10]. We use mutual annihilation policy here.

3 Design of a Fuzzy Logic Con-
troller Using a Modified Genetic
Algorithm

3.1 Problem Description

Our objective is to investigate how relatively sifnple agents
can adaptively learn to solve a complex problem. Each
agent should learn simple behaviors which are collectively
sufficient to solve the problem. Agents have to decompose
the problem effectively but this decomposition should be
an emergent property of adaptive learning and not pre-
programmed. It is an important motivation of this work
that a problem should be solved with the minimal possible
direction from the programmer or the trainer. We apply a
modified genetic algorithm to find a fuzzy logic controller
(FLC) for agents.

The
predators (agents controlled by FLC) have to learn to
catch the prey. Two agents and one prey are used in our

The experimental problem is a pursuit game.

simulation. The motion of the prey is determined to run
away from the nearest predator with the pre-specified ve-
locity when the predator is in the threat region.

Fig 2. Capture condition

The task of the agents is to capture the prey in a limited
period while at the same time to satisfy that constraint
that each agent should catch the prey in the opposite di-
rection. Fig. 2 shows two regions in which each agent

should be placed to satisfy the constraint. The prey is

considered to be captured when the following two condi-
tions are satisfied.

distance(T;, Tp) < 1.5, Vi
3w/4 < |angle(T,, T1) — angle(T,, T2)| < 57/4

(2)
(3)

where distance() returns the distance between two agents
and angle(T,,T;) returns the relative angle of 7; with re-
spect to the heading angle of T},.

Success of the task depends on agents learning to co-
operate in order to catch the prey. Each agent behaves
independently of the other, and only knows about the ex-
istence and relative position of other agents and the prey
as described in the previous section. So there is no direct
communication between agents, and their knowledge of
the aims of other agents is also indirect. Hence each agent
interacts with a highly dynamic environment. Learning
(modifying the rule table of FLC) takes place through
feedback gained from actions in the environment.

1_

0 2 7

Fig 3. Membership functions for r

l..

{
i 1

-/2 0

]
/2 T
Fig 4. Membership functions for 8

In this paper, the pursuit model has the size of 10 x 10,
that is, w = 10 and [= 10. Initial positions of the agents
and the prey is shown in Fig. 1. The threat region of
the prey is defined as a circle centered at the prey with
a radius of 3. The translational velocities for agent and
prey are 3/sec and 1/sec, respectively. We use a zero-
order Sugeno fuzzy model for FLC to reduce computation
time[15]. Every linguistic variables has two fuzzy sets.

509

Fig. 3 and Fig. 4 show the membership functions of the
fuzzy set for r; and 8;, respectively. The position of each
agent is updated using the following approximations.

Az = (vcos@)AT 4)
Ay = (vsin9)AT (5)
Al = wAT (6)

where v and w are the robots’ translational and angular ve-
locity, respectively, and AT is the sampling period, which
is set to 0.05 sec in the simulation. We have simulated the
following two situations.

Case 1: the prey is fixed during the simulation.
Case 2: the prey is moving to run away from the predators.

3.2 Methodology

We used a modified genetic algorithm (MGA)[5]. For a
full description and performance of the algorithm read-
ers are referred to the reference. The MGA is described
briefly here for convenience. The MGA consists of the fit-
ness modification and the modified mutation probability.
The fitness value for a certain string is determined by the

following rule.

k x fitnessayg, if fitness > k x fitnessgy,

fitness' = {

fitness, other case

(7)
where fitness is the original fitness value and fitness' is
the modified value. fitness,,, is the average of fitness
values and k is a constant greater than 1. The modified
mutation probability, p,, is given as

Pmo, if the fittest is the same for
Nyeset generations

pm_lo'wy lf pm(igen) X k] S pm_low
pm(igen) X ky, other case

pm(igen +1)= (8)

where igen is the generation number. pmg, Pm_iow, and &
is a positive constant less than 1. N,e; is an integer con-

stant.

Some aspects to be considered to use the modified ge-

netic algorithm are as follows:

o Chromosome representation and Population size: a
rule table of condition-action rules is indexed implicitly by
the pattern in the condition part. 2 bits are used to rep-
resent the output (angular velocity) in {—1,0,1,2}. Since

there are 5 linguistic variables and two fuzzy sets for each
variable, a rule table encoded in a binary string requires
64 bits since (2 X 2 x 2 x 2 x 2) x 2 = 64. A population
consists of 50 chromosomes in our simulation.

o [itness: the fitness function is defined as

1
fitness = Y + F3 9)
Z (Fi(t) + P2 (1))
=0
n
F@i) = tx Z distance(T,, T;) (10)
i=1
150
B = _—
2(?) Z distance(T;, Tj) (11)
Vi,j s.t. distance(T;,T;) < 1.5
F = 1, when t?le prey captured (12)
0, otherwise

where tfina is the time when a simulation stops. When
no goal occurs tginq is set to 100, i.e. 5 sec. Fi(t) rewards
the agent that moves closer to the prey. Fy(t) prevents
the agents from collisions.

e Reproduction: first, the fitness values are normalized
by dividing them by the average fitness value of the current
population. A chromosome is reproduced j times, where j
is an integer part of the normalized fitness. The remaining
fractions are used to generate additional offsprings using
the standard roulette wheel selection method. We used
the elitist strategy, that is, the best chromosome is always
reproduced without any alterations. Each simulation con-

sists of 100 generations.

e Crossover: we used one point crossover. From exper-
imentation, we found that a crossover probability of 0.8
yielded best results.

e Mutation: we used the modified mutation probabil-
ity. The MGA parameters are as following: pgro = 0.5,
Pmiow = 0.01, Nreset =5, k= 2.5 and k; = 0.9.

4 Simulation Results and Discus-

sion

Fig. 5 and Fig. 7 show the typical results for the case 1
and case 2, respectively. Each graph illustrates the max-
imum fitness value at each generation. In the case of the
present experimental task the increase over generations

510

indicates that the agent is learning more and more appro-
priate behavior. MGA successfully found solutions to the
both cases. The agents have displayed co-operative be-
havior to capture the prey while satisfying the constraint.

10"}
107}
a 1
£
10°
107}
10° . N . ,
0 20) 60 80 100
generations
Fig 5. Best fitness results for the case 1
10
9
8
7
6
5 [}
4
3
2
1
0
o 3) 6 8 10
Fig 6. Agent trajectories for the case 1
10° —
10"}
107
@
£
=10
10"
f/_r——F—
10° . .
0 20 40 60 80 100
generations

Fig 7. Best fitness results for the case 2

In the case 1, the MGA found a solution (FLC capable
of making the agents captures the prey) after about 30

In the case 2, the MGA found a solution
after 45 generation due to the moving prey. In both cases,

generations.

the agents capture the prey after about 4 seconds.

=
(=]

N W s 0O N @ ©

-

=]

Fig 8. Agent trajectories for the case 2

Fig. 6 and Fig. 8 show the best trajectory of each agent
for the case 1 and 2, respectively. ‘0’ represents the end
position of an agent. In the case 1, the upper agent shows
a complicated motion due to the wall. The other agent is
waiting till other agent approaches in the right direction.
Although the translational velocities are equal the lengths
of the trajectories are different because the agent learns
to know how to stop using the mutual annihilation policy.
In the case 2, the agents successfully captured the moving
prey by predicting the motion of the prey.

5 Conclusion

We have implemented an evolutionary approach using a
genetic algorithm to design a fuzzy logic controllers for
multi-agent system. For that purpose, a pursuit model
consisting of two-wheeled mobile robots was used. A mod-
ified genetic algorithm was applied to automating the dis-
covery of rule table of the fuzzy logic controller for multi-
agents solving a pursuit problem. Though we did not use
comprehensive knowledge about the system the genetic
algorithm successfully discovered a rule table that govern
emergent co-operative behavior. Simulation results indi-
cate that, an evolutionary approach to find the appropri-
ate rules for emergent co-operative behavior seems to be

promising.

511

References

(1l

[2]

3]

(5]

8]

[9]

(11]

M. J. Patel and V. Maniezzo, “NN’s and GA’s:
Evolving co-operative behavior in adaptive learning
agents,” IEFEFE International Conference on Evolu-
tionary Computation, pp. 290-295, 1994.

H. H. Lund and O. Miglino, “From simulated to real
robots,” IEEE International Conference on FEvolu-
tionary Computation, pp. 362-365, 1996.

I. K. Jeong and J. J. Lee, “Adaptive simulated an-
nealing genetic algorithm for control applications,”
Int. J. Sys. Sci., Vol. 27, No. 2, pp. 241-253, 1996.

M. Mclnerney and A. P. Dhawan, “Use of genetic
algorithms with backpropagation in training of feed-
forward neural networks,” IEEE International Con-
ference on Neural Networks, pp. 203-208, 1993.

1. K. Jeong and J. J. Lee, “A modified genetic algo-
rithm for neurocontrollers,” IEEFE International Con-
ference on Evolutionary Computation, pp. 306-311,
1995.

K. Kristinsson and G. A. Dumont, “System identifi-
cation and control using genetic algorithms,” IEEE
Trans. Syst., Man, Cybern., Vol. 22, No. 5, pp. 1033-
1046, 1992.

C. L. Karr and E. J. Gentry, “Fuzzy control of pH
using genetic algorithms,” IEEE Trans. Fuzzy Syst.,
Vol. 1, No. 1, pp. 46-53, 1993.

Y. Ichikawa and T. Sawa, “Neural network appli-
cation for direct feedback controllers,” IEEE Trans.
Neural Networks, Vol. 3, No. 2, pp. 224-231, 1992.

D. E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Reading, MA,
Addison-Wesley, 1989.

J. D. Lohn and J. A. Reggia, “Discovery of self-
replicating structures using a genetic algorithm,”
IEEE International Conference on FEvolutionary
Computation, pp. 678-683, 1995.

T. Haynes and S. Sen, “Crossover Operators for
Evolving A Team,” Proceedings of the Annual Con-
ference on Genetic Programming, pp. 162-167, 1997.

12

[13]

(14]

[15]

(16]

512

H. Iba, “Multiple-Agent Learning for a Robot Nav-
igation Task by Genetic Programming,” Proceedings

of the Annual Conference on Genetic Programming,
pp- 195-200, 1997.

W. P. Lee, J. Hallam and H. H. Lund, “Applying
Genetic Programming to Evolve Behavior Primitives
and Arbitrators for Mobile Robots,” IEEE Interna-

tional Conference on Evolutionary Computation, pp.
501-506, 1997.

H. Heider and T. Drabe, “Fuzzy System Design with
a Cascaded Genetic Algorithm,” IEEE International

Conference on Evolutionary Computation, pp. 585-
588, 1997.

J.S. R. Jang, C. T. Sun and E. Mizutani, Neuro-
Fuzzy and Soft Computing, Upper Saddle River, NJ,
Prentice-Hall, 1997.

L. Davis, Handbook of Genetic Algorithms, New York,
Van Nostrand Reinhold, 1991.

