• Title/Summary/Keyword: fuzzy least squares method

Search Result 47, Processing Time 0.024 seconds

Fuzzy Modeling and Design of Fuzzy Controller Using Fuzzy Clustering (퍼지 클러스터링을 이용한 퍼지 모델링과 퍼지 제어기의 설계)

  • Kwag, Keun-Chang;Park, Sang-Min;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.675-678
    • /
    • 1997
  • In this paper, we present a fast and robust algorithm for the design of fuzzy controller and identifying fuzzy model from numerical data by combining the cluster estimation method with a linear least squares estimation procedure. The proposed method is compared with Adaptive Neuro-Fuzzy Inference System(ANFIS) as the standard example of neuro-fuzzy model. Finally we will show its usefulness and effectiveness for the design of fuzzy controller of a cart-pole system and fuzzy modeling for the coagulant dosing of a water purification system.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting (최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

Using Kalman Filtering and Segmentation Techniques to Capture and Detect Cracks in Pavement

  • Hsu, C.J.;Chen, C.F.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.930-932
    • /
    • 2003
  • For this study we used a CCD video camera to capture the pavement image information via the computer. During investigation processing, the CCD video camera captured 10${\sim}$30 images per second. If the vehicle velocity is too fast, the collected images will be duplicated and if the velocity is too slow there will be a gapped between images. Therefore, in order to control the efficiency of the image grabber we should add accessory tools such as the Differential Global Positioning System (DGPS) and odometer. Furthermore, Kalman Filtering can also solve these problems. After the CCD video camera captured the pavement images, we used the Least-Squares method to eliminate images of gradation which have non-uniform surfaces due to the illumination at night. The Fuzzy Entropy method calculates images of threshold segments and creates binary images. Finally, the Object Labeling algorithm finds objects that are cracks or noises from the binary image based on volume pixels of the object. We used these algorithms and tested them, also providing some discussion and suggestions.

  • PDF

On-line Estimation of DNB Protection Limit via a Fuzzy Neural Network

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.222-234
    • /
    • 1998
  • The Westinghouse OT$\Delta$T DNB protection logic heavily restricts the operation region by applying the same logic for a full range of operating pressure in order to maintain its simplicity. In this work, a fuzzy neural network method is used to estimate the DNB protection limit using the measured average temperature and pressure of a reactor core. Fuzzy system parameters are optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to optimize the antecedent parameters and a least-squares algorithm to solve the consequent parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the proposed method has 5.99 percent larger thermal margin than the conventional OT$\Delta$T trip logic. This simple algorithm provides a good information for the nuclear power plant operation and diagnosis by estimating the DNB protection limit each time step.

  • PDF

Fuzzy Theil regression Model (Theil방법을 이용한 퍼지회귀모형)

  • Yoon, Jin Hee;Lee, Woo-Joo;Choi, Seung-Hoe
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.366-370
    • /
    • 2013
  • Regression Analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper introduce Theil's method to find a fuzzy regression model which explain the relationship between explanatory variable and response variables. Theil's method is a robust method which is not sensive to outliers. Theil's method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. We propose an example to show Theil's estimator is robust than the Least squares estimator.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

More Efficient Method for Determination of Match Quality in Adaptive Least Square Matching Algorithms

  • Lee, Hae-Yeoun;Kim, Tae-Jung;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.274-279
    • /
    • 1998
  • For the accurate generation of DEMs, the determination of match quality in adaptive least square matching algorithm is significantly important. Traditionally, only the degree of convergence of a solution matrix in least squares estimation has been considered for the determination of match quality. It is, however, not enough to determine the true match quality. This paper reports two approaches of match quality determination based on adaptive least square correlation : the conventional if-then logic approaches with scene geometry and correlation as additional quality measures; and, the fuzzy logic approaches. Through these, accurate decision of match quality will minimize the number of blunder and maximize the number of exact match. The proposed methods have been tested on JERS and SPOT images and the results show good performance.

  • PDF