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Abstract

The Westinghouse OT AT DNB protection logic heavily restricts the operation region by

applying the same logic for a full range of operating pressure in order to maintain its simplicity.

In this work, a fuzzy neural network method is used to estimate the DNB protection limit using

the measured average temperature and pressure of a reactor core. Fuzzy system parameters are

optimized by a hybrid learning method. This algorithm uses a gradient descent algorithm to

optimize the antecedent parameters and a least-squares algorithm to solve the consequent

parameters. The proposed method is applied to Yonggwang 3&4 nuclear power plants and the

proposed method has 5.99 percent larger thermal margin than the conventional OT 4T trip

logic. This simple algorithm provides a good information for the nuclear power plant operation

and diagnosis by estimating the DNB protection limit each time step.

1. Introduction

The core protection system philosophy is to
define a region of permissible operation in terms
of power, pressure, temperature, flow rate and 3-
D power distribution, and to trip the reactor
automatically when the limits of this region are
approached. The protection system of the
conventional pressurized water reactor designed
by Westinghouse is an analog system. However,
the Korea Standard Nuclear Power Plant (KSNPP)
and the recently designed nuclear reactors employ
a digital protection system. The CE-type nuclear
power plants which KSNPP is based on, employ
the Core Protection Calculator System (CPCS)
which continuously calculates DNBR and Local
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Power Density (LPD) in order to assure that the
specified acceptable fuel design limits on DNB and
centerline melt are not exceeded during
anticipated operational occurrences. The CPCS
has approximately 6,000 constants and the CPCS
is designed by deciding the CPCS constants [1].
This large number of constants makes the
software V&V (Verification and Validation) more
difficult.

The DNB correlations provide the expected value
of fuel rod surface heat flux that will cause DNB
for various coolant conditions and flow
geometries. The ratio of the expected DNB heat
flux to the actual fuel rod heat flux at a particular
time during an incident is called the DNBR at that
time. A correlation limit DNBR (e.g., 1.3 for W-3
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correlation or 1.22 for ERB-2 correlation) is
established based on the variance of the
correlation such that there is a 95 percent
probability at a 95 percent confidence level that
DNB will not occur when the calculated DNBR is
at the correlation limit DNBR. The conservative
design method that the calculated DNBR is greater
than the correlation limit DNBR on the limiting
power rod, is established by considering all
parameters at fixed conservative values. The
variable value design method used in this work
establishes DNBR >the correlation limit DNBR on
the limiting power rod by statistically combining
the effects of uncertainties of the input
parameters. Therefore, the design limit DNBR
(e.g., 1.54) applicable to all Condition [ and Il
events is determined by utilizing the DNBR
sensitivities and variances in three input parameter
categories : plant operating parameters, nuclear
and thermal parameters and fabrication
parameters [2].

Since the conventional Westinghouse DNB
protection logic is implemented on analog circuits,
the logic must be very simple. The Westinghouse
OT AT protection logic heavily restricts the
operation region by applying the same logic for a
full range of pressure in order to maintain its
simplicity. However, if the DNB protection logic is
implemented in a digital processor, a little
complexity may be allowed to increase the thermal
{or operation} margin.

The objective of this work is to estimate the DNB
protection limit according to operating conditions
by using a fuzzy neural network. Fuzzy system
parameters such as membership functions and the
connectives between layers in a neural network
are tuned by a hybrid learning method to minimize
the errors between the target values and the
trained values. The proposed method was applied

to Yonggwang 3&4 nuclear power plants.

2. Design of a Fuzzy Neural Network
System

A fuzzy system consists of situation and action
pairs. Conditional rules described in if/then
statements are generally used. Adapting fuzzy
systems for on-line application would be the
desirable objective. Such neuronal improvements
of fuzzy systems as well as the fuzzification of
neural network systems aim at exploiting the
complementary nature of the two approaches; the
fuzzy and neural network systems. Their
composite is usually called as a fuzzy neural
network system. Its simple description will be
given first and then applied to Yonggwang 3&4
nuclear power plants in the next section.

In a fuzzy system, the i-th rule can be described
using the first-order Sugeno-Takagi type [3] as
follows :

if x; is Ay AND --- AND x,, is A,

theny is f {x), =+, Xm) (1)
where

X1, -, X, © input values to the fuzzy inference
system {m = the number of

input),
Ay, -+, Am ¢ antecedent membership
functions of each input variable
for the i-th rule [i = 1, -+, n(=

the number of rules)],

filxq, =, X} = ‘;. giX; + r; : the output value
of the i-th rule. (2)

Generally, there is no restriction on the shape of
a membership function. In this paper, the
following symmetric Gaussian membership
function is used :

{x,—c.)*
wix)=e 2 | (3)
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Fig. 1. Fuzzy-neural Network.

where ¢; is the center position of a peak of a
membership function for the i-th rule and the jth
input and g, is the sharpness for the i-th rule and
the j-th input.

The output of an arbitrary i-th rule f, is composed
of the first-order polynomial of inputs as given in
eq. (2). Then, from the weight average method,
the output of the fuzzy inference with n rules is
given as follows :

n

y=2 W f, (4)
where
T =
' g}w,' 5)
wy = f{/tu (x) 6)

The fuzzy neural network system described above
is shown in Fig. 1. The system architecture
consists of five layers with as follows :

Layer 1 : generate the membership grades
(l‘u(xj )),

Layer 2 : calculate the firing strengths of each
rule via multiplication (refer to eq.
(6)),

Layer 3 : calculate the ratio of the i-th rule’s
firing strength to the sum of all
rules’ firing strengths (refer to eq.
),

Layer 4 : calculate rule outputs based on the
consequent parameters (W, - f),

Layer 5 : sum all the inputs from layer 4 {refer
to eq. (4)).

Fuzzy system parameters such as membership
functions and the connectives between layers in a
fuzzy neural network must be optimized for good
performance. This is accomplished by adapting
the antecedent parameters {membership function
parameters) and consequent parameters (the
polynomial coefficients of the consequent part) so
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that a specified objective function is minimized.

The adaptation methods of most fuzzy neural
systems rely on the gradient-descent optimization
[4H7]. However, in this work, a hybrid learning
method which Jang [8] had proposed, was used to
optimize the antecedent and consequent
parameters because the method shows better
performance than any other method. The method
combines the backpropagation gradient descent
method and the least-squares method. It uses a
gradient descent algorithm to optimize the
antecedent parameters and a least-squares
algorithm to solve the consequent parameters.
When an output layer of the network consists of a
linear combination of the previous layer’ s output,
the weights can be solved by using the least-
squares method rather than trained iteratively with
the backpropagation algorithm. Since it uses two
different algorithms, the training method is called
a hybrid learning method. The consequent
parameters are updated first using a least-squares
method and then the antecedent parameters are
updated by backpropagating the errors that still
exist.

The algorithm which the consequent parameters
is updated by, will be introduced first. Equation (4)
can be expressed as follows :

Y =wiX;gu + " + Xm G + 1) + Wz (X1 g2
4 X Gom + TR) o+ (7)
wn (xl gnt + 't + Xm Qpm t+ rn)-

Also, equation (7} can be written in different form

by using vectors :

y =[xy o Wy oee oo Wik Wik Wy Wl qim . (8

In case that there exist N data pairs (x;, x2, -,
Xm, Y}, the output y and inputs x; , -+, x,, are N-
dimensional column vectors. Therefore, equation
{8) can be expressed as follows :

Y = XW, 9

where
Y : a N-dimensional column vector,
X : a Nx{(m+1)n] matrix,
W : a (m+1)n-dimensional column vector
which consists of weights,
n : the number of rules,
m : the number of inputs,

N : the number of data pairs.

If there exists the inverse of the matrix X, the
weight vector W which consists of the consequent
parameters can be solved easily. However, there
does not usually exist its inverse. For example, it is
necessary that the matrix X should be a square
matrix for the matrix invertible. However, if it is
not a square matrix, we can solve the vector W by
using its pseudoinverse. Therefore, a pseudoin-
verse can be in general used to solve the matrix
W

W=XX"XY (10)

This method involves inverting X"X, which can
cause numerical problems when the columns or
rows of X'X are dependent. However, since we
use DNB data at different average temperature
and pressure of a reactor, there does not exist a
problem like this.

The gradient decent algorithm is used where the
antecedent parameters are updated by
backpropagating the errors that still exist after the
consequent parameters were adapted. The

gradient descent method optimizes the parameters
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of the membership functions by minimizing the
objective function defined as follows :

1
E="5 5UssF = 5E, (11)

where
N : the number of data pairs,
Y ¢ the target output for the p-th input
data (x5, -*, Xm),
y, : the calculated output from a fuzzy
neural network for the same input
data,

1
Ep = ?(yrp _yp)? (12)

To minimize the above objective function with
respect to the antecedent parameters, the
following gradient descent algorithm is applied :

aik+1) = ayB—Te X2, 13

where
a, : arbitrary membership function
parameters c;, and g,
k : learning step,
7, : the learning rate for parameter ay;,

’

the subscript ‘i’ denotes the rule number and * j
denotes the antecedent number which is the same
as the input number of the fuzzy neural network.

In order to update the antecedent parameters, it is

3E,
required to evaluate g, . The following relation-
ship for the adaptation of the membership

function parameters (antecedent parameters) is

used :

aEﬁ _ aEp ayp dw; aw,-j

da; 9y, ow; dw; da;' 14)
where

ok,

ayp = _(ym_yp), (15)

3, _ (fimy)

Iw; S (16)
aw,- _ w;

dw;  wyxy) 17

In eq. (14), 2" _ depends on the input member-
aqy

ship function shape. Since the symmetric Gaussian

membership functions is used as mentioned
previously, the following derivative is obtained in
order to update the parameter c; :

ac, = w,yT . (18)

Also, in order to update the parameter o, the
following derivative is needed :

dw: )2
y

As a result, the parameter adaptation is performed

by the following equations :
ci(t+1) = c(H+ Ja ﬁ; [yp—3]
(20)
X (fi— ¥p) w.ﬁc’o;T’l .
0'5(t+ 1) = O';J(t)'*' ﬁ;[y;'j: yp]
X (fi=,) w.‘(x'TC”

The gradient decent algorithm depends much on
the learning rate and the learning rate is usually
updated from the previous learning rate as
follows :

if SR < Ey(k—1), then (B = 1.15(k—1),
or if ESR) > E(k—1), then p(k) = 0.87(k—1). (

Therefore, the consequent parameters are solved
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by eq. (10) and the antecedent parameters are
calculated by egs. (20} and (21). Using the
optimized parameters, the AT (the temperature
difference between the hot leg and the cold leg)
value is calculated which DNB may take place at a
measured pressure and a measured average
temperature. The 4 T protection limit is
established based on the measurement errors and
the variance of the estimated value so that there is
a 95 percent probability at a 95 percent
confidence level that DNB will not occur when the
calculated 4T is at the AT protection limit.
Therefore, the AT protection limit is defined as

follows :
AT, = AT — €4T, — 1.6450 (23)

where

AT :the AT calculated by the proposed

algorithm,

AT, : the rated 4T,

€ : measurement uncertainty (refer to table
1),

o : the standard deviation of difference
between the actual values and the
estimated values.

When the measured AT is greater than AT, the
nuclear power plant is tripped.

3. Application to Yonggwang 3 & 4

The applied operation period is the first fuel
cycle of Yonggwang 3&4 Units. The design
critical heat flux correlation is CE-1 and the actual
correlation limit DNBR is 1.19. The design limit
DNBR is 1.38 (including 1.8% rod bow and 1%
HID grid factors) for typical cell of Yonggwang
3&4 units (refer to [1]). However, in this work,
COBRA code with the W-3 correlation was used
for DNBR calculation and the uncertainty of the
W-3 is greater than that of CE-1. The actual

Table 1. Measurement Errors of DNBR
Calculations [1].
Variance
Parameters Range R = R2/12)
Errors
Calibration
1. Calorimetric 4.0% 1.3
2. Tavg (+2'F) 4.9% 2.01
3. Pressure (£ 8psi) 1.5% 0.19
Signal linearity, reprodu- 10.73% 9.6

cibility, and bistable error

Total Variance 13.10 (6=3.62%)

5.96%(1.6450)

Setpoint Uncertainty

correlation limit DNBR for the W-3 correlation is
1.3. Although the different code was used, all the
DNBR input parameters were assumed to have
the same sensitivities and uncertainties as
calculated by CETOP code (refer to table 2) and it
is considered to have different CHF correlations
only. Based on the assumptions, the design limit
DNBR was assumed to be 1.493 (refer to [1]).
Also, in order to generate DNB data, the same
assumptions which had been used in obtaining the
Westinghouse DNB protection limit were applied.
The major assumptions used in calculation are as
follows [9] :

1) The axial power distribution is an 1.55 chopped

cosine shape defined as follows [1] :

y = l.SSCOS(M&EMJz*), (24)
where
L, = active core length and —L./2 < z
<L,/2.

2) The nuclear enthalpy rise hot channel factor
(F%.) is a design hot channel factor F,y for
100 percent rated or greater power levels, and
for power levels less than the rated power Flyy
is given by

" (P) = Fign[1 + 0.3(1—P)], (25)
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Table 2. DNBR Sensitivities and Uncertainties of Yonggwang 3&4 [1].

Parameter Nominal Value  Standard Sensitivity S/ m
(&) Deviation (9;) (S)
1. Primary Coolant Flow Rate 1.0 0.025 1.3937 0.0250
2. Core Power 1.0 0.01 —1.8789 0.0100
3. Core Inlet Temperature [degree F} 564.5 15 —8.1070 0.0027
4. Primary System Pressure 2250 30 2.2852 0.0134
5. Nuclear Enthalpy Rise Hot Channel Factor 1.55 0.0243 ~1.2455 0.0157
6. Nuclear Enthalpy Rise Hot Channel Factor 1.0 0.015 —~0.4492 0.0150
7. Engineering Heat Flux Hot Channel Factor 1.0 0.015 —1.0021 0.0150
8. T/H Code - 0.025 1.0 0.0250

where P = power level.

3) The coolant flow rate is the design value which
is usually about 5% less than the best estimate
flow.

4) The bypass flow is excluded from the available
core flow.

5) The coolant flow to the hottest coolant channel
is reduced by 5 percent.

Except for the above parameters, the other DNB
input parameters were considered to be nominal
values.

As the core power and inlet temperature vary at
the given pressure, the vessel average hot-leg
temperature is calculated using COBRA code
when the minimum DNBR of the limiting power
rod is equal to the design limit DNBR. The inlet
and outlet temperatures where the minimum
DNBR of the limiting power rod is equal to the
design limit DNBR, were given in table 3.

In order to train the fuzzy neural network, the
DNB data given in table 3 were used. The number
of the network inputs is two and the inputs to the
network are the pressure x; and average
temperature x,. Also, the target output y, is 4T.
These inputs and output consist of 189 data pairs
1, x2, yr).

The membership functions of the input were
selected as the Gaussian function as described
previously. Therefore, the tuning parameters are
the center value ¢; and standard deviation s; of a

peak of the Gaussian function.
The following initial values were assumed in
order to perform the proposed algorithm :
c¢i : randomly distributed between 1730 and
2500psia (i=1, -, n),
¢ : randomly distributed between 570 and
660°F (i=1, --- ,n),
si = 50psia (i=1, -+, n),
s = 10°F (i=1, ---, n),
learning rate : ,,=15, 9.,=5, 74:=3, .= 0.7.
Under the above initial conditions, the number of
rules was selected to be 5. When the network is
trained 2000 times, the results are shown in Figs.
2~10. The initial membership functions are
shown in Fig. 2. The trained membership
functions are shown in Fig. 3. The trained
membership functions are very different from the
initial ones. Also, the consequent parameters are
given in table 4. Figures 4 and 5 show the actual
and estimated values. Figure 6 shows the
distribution of the errors between the estimated 4
T s and target 4T s which consist of 189 data.
Its distribution is similar to the Gaussian
distribution. Based on this distribution, the
standard deviation ¢ is 0.1164°F. In order to have
more conservative feature, the measurement
uncertainty and the 1.645 ¢ are subtracted from
the estimated AT to obtain the DNB protection
limit. It is known from Fig. 6 that the calculated
values are almost the same as the actual values.
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Table 3. DNB Data (Inlet and Outlet Temperature[°F]) for Y/G 3&4 (DNBR =1.493).

Power%]
Prgss ! 118 110 105 100 95 90 85 80 75 S—?-t::;d
Ipsia)
2415 577.10| 587.45| 593.95| 600.28] 604.75{ 609.37| 614.30| 619.30| 624.30 663.20
644.66 | 64890 | 651.51| 654.17| 655.44| 656.78| 658.33| 660.05 661.94
2385 575.60 | 586.00 | 592.51| 598.95| 603.45| 608.07{ 613.01| 618.12} 623.15 661.37
643.47 | 647.75| 650.41| 653.09| 654.37| 655.76| 657.33| 659.07 | 660.98 ’
2355 574.12 1 584.57| 591.10| 597.67| 602.17} 606.82| 611.77| 616.97 { 622.03 659.51
642.28 1 646.62 | 649.32| 652.04] 653.32| 654.73] 656.37| 658.13| 659.51 ’
2395 572.68|583.17 | 589.73| 596.40| 600.92| 605.57| 610.55! 615.77 | 620.94 657.65
641.11|645.51} 648.23| 651.00| 652.30f 653.71| 655.39| 657.20} 657.65 ’
2295 571.20|581.73 | 588.37| 595.06] 599.67| 604.37| 609.35|614.571 619.85 655.77
639.97 | 644.37 | 647.16} 649.97| 651.28| 652.73| 654.41| 655.77 | 655.77
2965 569.72 | 580.36 | 587.03| 593.73| 598.47| 603.17| 608.18| 613.42| 618.80 653.82
638.83 | 643.29 | 646.10| 648.93| 650.29| 651.75| 653.45| 653.82] 653.82
2935 568.251579.03 | 585.70| 592.46| 597.27| 602.00| 607.03] 612.29| 617.77 651.88
637.70 | 642.21 | 645.04| 647.92| 649.30| 650.79| 651.88] 651.88| 651.88 ’
2905 566.82 [ 577.70 | 584.40| 591.16| 596.07| 600.83| 605.88| 611.17| 616.71 649 92
636.61|641.13| 644.01| 646.89| 648.31| 649.83| 649.92| 649.92 | 649.92 ’
2175 565.39 | 576.38 | 583.13| 589.90| 594.81| 599.68{ 604.74| 610.05] 615.62 647.92
635.47 1 640.05 | 643.011 645.90| 647.31| 647.92} 647.92| 647.92| 647.92 )
2145 563.98 | 575.08 | 581.83| 588.67| 593.59| 598.53} 603.62| 608.95| 614.55 645.91
634.31| 638.99 | 641.95| 644 92| 645.91| 645.91| 645.91| 645.91| 645.91 ’
2115 562.53 | 573.80 | 580.59|:587.44| 592.37| 597.41} 602.54| 607.88| 613.49 643.91
633.12| 637.95| 640.94| 64391} 643.91| 643.91| 643.91} 643.91| 643.91 )
2085 561.121572.55| 579.35| 586.24} 591.19} 596.32| 601.47| 606.85| 612.46 641.87
631.96]636.93| 639.93| 641.87| 641.87 641.87| 641.87| 641.87| 641.87 ’
2055 559.76 | 571.25| 578.13| 585.04| 590.03] 595.18} 600.41| 605.82| 611.52 639.80
630.84 | 635.93 | 638.93| 639.80] 639.80{ 639.80} 639.80| 639.80| 639.80
2025 558.43|569.95| 576.93| 583.87| 588.87| 594.05| 599.38| 604.80| 610.55 637.72
629.751634.86 | 637.72| 637.72| 637.72] 637.72} 637.72| 637.72| 637.72
1995 557.10 1 568.65} 575.76| 582.70| 587.75] 592.95( 598.35| 603.82} 609.60 635.63
628.651633.79| 635.63 635.63| 635.63| 635.63| 635.63| 635.63} 635.63 )
1965 555.76 | 567.35 | 574.561 581.55| 586 60| 591.83| 597.33| 602.87 | 608.63 633.38
627.55|632.72 | 633.38| 633.38] 633.38] 633.38] 633.38| 633.38| 633.38 )
1035 554.44 | 566.08} 573.39| 580.40| 585.48| 590.73| 596.33| 601.92| 607.68 631.14
626.47 |'631.14:|-631:14| 631.14{ 631.14| 631.14| 631.14]| 631.14} 631.14
1905 553.14 |564.83 | 572.22| 579.30| 584.40} 589.67| 595.31| 600.97 | 606.79 628.89
625.401'628.89 | 628.89] 628.89| 628.89] 628.89] 628.89| 628.89| 628.89
1875 551.86 | 563.63| 571.05| 578.23| 583.35| 588.65| 594.37| 600.08 | 605.93 626.65
624.34 | 626.65 | 626.65| 626.65| 626.65| 626.65| 626.65] 626.65| 626.65
1845 550.65 | 562.43 1 569.90| 577.17| 582.33} 587.68| 593.42| 599.22} 605.10 624.41
623.351624.41|624.41} 624.41| 624.41} 62441} 624.41| 62441 624 .41
1815 549.43{ 561.23 | 568.78| 576.17| 581.35| 586.73| 592.52| 598.40| 604.32 622.16
622.161.622.16 | 622.16| 622.16| 622.16| 622.16] 622.16| 622.16| 622.16 ’

« hot-leg boiling in the dotted cells

229
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Table 4. Trained Consequent Parameters.

P 1.4889e—001 2.4912¢—-002 1.3239¢—001 2.3921e—002 3.4772e—002
pz —19947e+000 —7.8633e—001 —1.9889%+000 -8.1617¢e—001 —1.0561e+000
T 9.7091e+002 4.8803e+002 1.0005e+003 5.0814e+002 6.3214e+002
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Fig. 4. Comparison of Actual and Trained 4Ts
Versus Average Temperature.

Figure 7 shows the sum of the squared-errors
between the estimated 4T s and the actual AT s
at each learning step and Fig. 8 shows the
maximum error at each step. As the learning
keeps going, these values decrease gradually.
These values increase at some steps but the
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Fig. 3. Final Input Membership Functions.
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Fig. 5. Comparison of Actual and Trained ATs
Versus Pressure.

gradient descent algorithm is stabilized by adjusting
the learning rates (refer to eq. (22)).

Figures 9 and 10 show the results after the
proposed algorithm was applied to data which had
not been used for the learning. Only table 3 is
used for learning of this algorithm. DNB
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Fig. 8. Maximum Error of Trained Values Versus
Learning Step.

protection limit at pressures 2250psia and 2000
psia which do not exist in table 3, were calculated
from the trained network. From the figures,
although the algorithm was applied to the arbitrary
measured pressure and average temperature, it is
known that it gives an accurate DNB protection
limit.

A steady-state thermal margin was compared
between the Westinghouse DNB protection
system and the proposed one. The thermal margin
may be defined as AT,/ 4To at nominal cold leg

10° g

s
(=]
N

sum of squared errors

0 500 1000 1500 2000
training no

Fig. 7. Sum of the Squared Errors of Trained
Values Versus Learning Step.

temperature and RCS pressure. The nominal cold
leg temperature and RCS pressure are 564.5°F
and 2250 psia, respectively. The rated AT, A4To
is given as 56.5°F and the AT protection limit
calculated by the proposed algorithm is 69.365°F
at the nominal cold leg temperature and RCS
pressure. Therefore, the thermal margin of the
proposed algorithm is 122.77%.

For an 1.55 chopped cosine shape at steady-
state condition, the Westinghouse OT 4T trip
setpoint is determined from the following

equation :

ATsp = ATO [Kl - KZ (Taug - TaugO)
+ Ks(P — P, (26)

where

ATy, = setpoint value of AT,

dTo =indicated 4 T at nominal plant
conditions,

T.q = measured average coolant temperature,

T = reference average coolant temperature
at nominal plant conditions of rated
power,

P = measured RCS pressure,

Py = reference RCS pressure at nominal plant

conditions of rated power,
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Fig. 9. Comparison of Actual and Trained A4Ts
Versus Average Temperature Using
Nontrained Data (Data at 2000 and 2500
Psia).

K is a preset manually adjustable bias, and K,
and K3 are preset manually adjustable
gains.

The constants K;, K, and K; can be determined
by solving three simultaneous equations derived
from the four intersection points (refer to [10]).
Each resulting equation is tested for various
pressures inside the defined pressure region in
order to assure that all the DNB limits are covered.
Generally, two of the equations derived from the
two intersection points are found to provide
protection over each pressure range. The final
equation is selected based on maximum available
operating margin.

The final OT AT setpoint is determined by
adjusting K, based on appropriate allowances for
uncertainties and equipment and measurement
errors (refer to table 1). The thermal margin is
calculated by substituting the following equation
into Eq. (26) :

Tow =

T
G

Ts
4T 27)

80 T v v v +
70 * »
60 . :
n * @
S ® :
2 ?
g'SO I @ ®
v &
£ >
~ 40} ?
s 40 °
8 " ¢ ¢ ]
:
o frained
20 1
10

1900 2000 2100 2200 2300 2400
pressure in psia

Fig. 10. Comparison of Actual and Trained A4Ts
Versus Pressure Using Nontrained Data
(Data at 2000 and 2500 Psia).

where
T. = cold-leg temperature.
To , ATs
Since (Tag— Tago) = A—Zo- [7—1_-02“ 1} | the ther-
mal margin of the Westinghouse DNB protection
system may be written as

aT,
AT, Kl'f‘Kz * T‘
aT, = AT, (28)
° 1+ K, - 5 I
where

K, = 1.2382, (from ref. [10] and table 1)

K, = 0.014846, (from ref. [10])

AT, = 56.5°F.
The conventional OT AT trip logic has the
thermal margin 116.78 percent. The proposed
method has 5.99% larger thermal margin than
the conventional OT 4T trip logic.

4. Conclusions

A fuzzy neural method was applied to
estimate the DNB protection limit using the
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measured average temperature and pressure.
Fuzzy system parameters such as the
membership functions and the connectives
between layers in a neural network are
optimized by a hybrid learning method. The
learning method uses a gradient descent
algorithm to optimize the antecedent
parameters and a least-squares algorithm to
solve the consequent parameters. The
consequent parameters are updated first using
a least-square method and then the antecedent
parameters are updated by backpropagating
the errors that still exist.

The network was trained by using 189 DNB
data of Yonggwang 3 and 4 units. The DNB
data are the inlet and outlet temperatures
where the minimum DNBR of the limiting
power rod is equal to the design limit DNBR at
a given pressure. The inputs to the fuzzy neural
network are the average temperature and
pressure of the reactor core and the output is
the temperature difference between inlet and
outlet AT. Therefore, the AT, which induces
DNB at a given average temperature and
pressure, is estimated from this algorithm. The
measurement error and the uncertainty of the
estimation algorithm are subtracted from the
estimated AT in order to establish the setpoint
AT so that this algorithm has some conserva-
tive features.

The proposed algorithm has 5.99 percent
larger thermal margin than the conventional
OT 4T logic. It is recommended to accomplish
more realistic and exact DNB protection limit
by adding the coolant flow rate and axial
shape to the input of the fuzzy neural
network using the DNB data on the coolant
flow rate. Because the estimation algorithm
gives sufficient conservative values with
more than 95%/95% probability/confidence
level although this algorithm is implemented

by the fuzzy and neural-network method, it
is desired that one is dazzled by the term
fuzzy’ .
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