Journal of the Korean Society for Precision Engineering
/
v.19
no.4
/
pp.132-139
/
2002
In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
This paper presents an approach of the Gustafson-Kessel (GK) clustering algorithm's performance in fault identification on power transmission lines. The clustering algorithm is incorporated in a scheme that uses hybrid intelligent technique to combine artificial neural network and a fuzzy inference system, known as adaptive neuro-fuzzy inference system (ANFIS). The scheme is used to identify the type of fault that occurs on a power transmission line, either single line to ground, double line, double line to ground or three phase. The scheme is also capable an analyzing the fault location without information on line parameters. The range of error estimation is within 0.10 to 0.85 relative to five values of fault resistances. This paper also presents the performance of the GK clustering algorithm compared to fuzzy clustering means (FCM), which is particularly implemented in structuring a data. Results show that the GK algorithm may be implemented in fault identification on power system transmission and performs better than FCM.
Kim, Jung-Min;Jung, Kyung-Hoon;Jung, Eun-Kook;Cho, Hyun-Hak;Kim, Sung-Shin
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.3
/
pp.367-372
/
2012
This paper presents a development of an analog type magnetic positioning system and its positioning accuracy improvement using fuzzy inference system. As the magnetic positioning system used on a magnet-gyro guidance system for AGV(automatic guided vehicle), it measures a position of magnet embedded in floor of the work place. The existing product of the magnetic positioning system is very expensive in Korea because it is being sold in a foreign country exclusively. Moreover, the positioning accuracy of the product is low because it uses digital type unipolar hall sensors. Hence, we developed the magnetic positioning system by ourselves and improved the positioning accuracy of the developed magnetic positioning system using fuzzy inference system. For experiment, we used the analog type magnetic positioning system which we have developed, and compared the performance of the proposed method with the performance of the existing positioning method for the magnetic positioning system. In experimental results, we verified that the proposed method improved the positioning accuracy of the magnetic positioning system.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.15
no.3
/
pp.57-66
/
2001
This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.
It has recently become known that the social issue of obesity, caused by increased caloric intake and lack of exercise, is a risk factor in the cause of various adult diseases. Above all, to prevent or cure obesity, we must accurately evaluate the degree of obesity, and we have used BML, WHR, and waist measurements for this purpose. In this paper, we propose an obesity evaluation system based on fuzzy inference using BML and waist measurement. For this purpose, we decided reasoning rule and membership function about BML and waist measurements. The inference result is presented in a descriptive sentence.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.1
/
pp.125-132
/
2011
Fire monitoring system detects a fire based on the values of various sensors, such as smoke, CO, temperature, or change of temperature. It detects a fire by comparing sensed values with predefined threshold values for each sensor. However, to prevent a fire it is required to predict a situation which has a possibility of fire occurrence. In this work, we propose a fire recognition system using a fuzzy inference method. The rule base is constructed as a combination of fuzzy variables derived from various sensed values. In addition, in order to solve generalization and formalization problems of rule base construction from expert knowledge, we analyze features of fire patterns. The constructed rule base results in an improvement of the recognition accuracy. A fire possibility is predicted as one of 3 levels(normal, caution, danger). The training data of each level is converted to fuzzy rules by FCM(fuzzy C-means clustering) and those rules are used in the inference engine. The performance of the proposed approach is evaluated by using forest fire data from the UCI repository.
In this paper, we present the position control of pendulum system which is driven by a ultrasonic motor. Since the system's response is different for each initial position of pendulum, it is difficult to obtain the satisfiable control performance by using a neural network which is learned by off-line. To overcome this problem, we propose the multiple controller based on fuzzy inference system for ultrasonic motor. and controller is designed by neural network. The proposed method shows good performance for any initial positions and it's effectiveness is verified from experiments. We expect that ultrasonic motor can be used as actuators of robot's leg or manipulator.
Journal of the military operations research society of Korea
/
v.26
no.2
/
pp.55-74
/
2000
A knowledge-based with production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a method to reflect the dynamic nature of a system when we make inferences with a knowledge-based system. This paper suggests a strategy of dynamic inference that can be used to take into account the dynamic behavior of decision-making with the knowledge-based system consisted of fuzzy production rules. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by the AHP(Analytic Hierarchy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with the Min operator, into a single DM for the rule. In this way, the importance of attributes of a rule, which can be changed from time to time, can be reflected in an inference with fuzzy production systems.
Journal of the Korean Institute of Intelligent Systems
/
v.6
no.2
/
pp.81-89
/
1996
A design method of fuzzy modeling is presented for the model identification of route choice of traffic problems.The proposed fuzzy modeling implements system structure and parameter identification in the eficient form of""IF..., THEN-.."", using the theories of optimization theory, linguistic fuzzy implication rules. Three kinds ofmethod for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 21,and proposed modified-linear inference (type 3). The fuzzy inference method are utilized to develop the routechoice model in terms of accurate estimation and precise description of human travel behavior. In order to identifypremise structure and parameter of fuzzy implication rules, improved complex method is used and the least squaremethod is utilized for the identification of optimum consequence parameters. Data for route choice of trafficproblems are used to evaluate the performance of the proposed fuzzy modeling. The results show that the proposedmethod can produce the fuzzy model with higher accuracy than previous other studies -BL(binary logic) model,B(production system) model, FL(fuzzy logic) model, NN(neura1 network) model, and FNNs (fuzzy-neuralnetworks) model -.fuzzy-neural
networks) model -.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.