• Title/Summary/Keyword: fuzzy extension

Search Result 178, Processing Time 0.027 seconds

Interval Type-2 Fuzzy C Clustering for Detecting Spherical Shells (원형 윤곽선 검출을 위한 Interval 제2종 퍼지 C 클러스터링)

  • Hwang, Cheul;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.713-719
    • /
    • 2004
  • This paper presents an interval type-2 fuzzy C-spherical shells (FCSS) algorithm that is an extension of the type-1 FCSS algorithm proposed in (1). In our proposed method, the membership values for each pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the cluster boundary obtained by the interval type-2 FCSS can be found to be more desirable than that of type-1 FCSS in the presence of noise. Experimental results are given to show the effectiveness of our method.

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Genetically Optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Set (퍼지집합 기반 진화론적 최적 퍼지다항식 뉴럴네트워크)

  • Park, Byoung-Jun;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2633-2635
    • /
    • 2003
  • In this study, we propose a fuzzy polynomial neural networks (FPNN) and a genetically optimized fuzzy polynomial neural networks(GoFPNN) for identification of non-linear system. GoFPNN architecture is designed by a FPNN based on fuzzy set and its structure and parameters are optimized by genetic algorithms. A fuzzy neural networks(FNN) based on fuzzy set divide into two structures that is simplified inference structure and linear inference structure. The proposed FPNN is resulted from integration and extension of simplified and linear inference structure of FNN. The consequence structure of the FPNN consist of polynomials represented by networks using connection weights for rules. The networks comprehend simplified(Type 0), linear (Type 1), and quadratic(Type 3) inferences. The proposed FPNN can select polynomial type of consequence part for each rule. Therefore, proposed scheme can offer flexible structure design capability for a system characteristics. Moreover, GAs is applied to networks structure and parameters tuning of proposed FPNN, and its efficient application method is discussed, these subjects are result in GoFPNN that is optimal FPNN. To evaluate proposed model performance, a numerical experiment is carried out.

  • PDF

Filter Convergence and Fuzzy Topology

  • Min, Kyung-Chan;Lee, Yoon-Jin;Myung, Jae-Deuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.269-274
    • /
    • 2010
  • After introducing many different types of prefilter convergence, we introduce an universal method to define various notions of compactness using cluster point and convergence of a prefilter and to prove the Tychonoff theorem using characterizations of ultra(maximal) prefilters.

Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm (Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장)

  • Heo, Gyeong-Yong;U, Yeong-Un;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

A common fixed point theorem in the intuitionistic fuzzy metric space (직관적 퍼지거리공간에서 공통 부동점 정리)

  • Park Jong-Seo;Kim Seon-Yu;Kang Hong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.71-74
    • /
    • 2006
  • The purpose of this paper is to establish the common fixed point theorem in the intuitionistic fuzzy metric space in which it is a little revised in Park [11]. Our research are an extension of Jungck's common fixed point theorem [8] in the intuitionistic fuzzy metric space.

  • PDF

Multi-Attribute Decision-Making Method Applying a Novel Correlation Coefficient of Interval-Valued Neutrosophic Hesitant Fuzzy Sets

  • Liu, Chunfang
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1215-1224
    • /
    • 2018
  • Interval-valued neutrosophic hesitant fuzzy set (IVNHFS) is an extension of neutrosophic set (NS) and hesitant fuzzy set (HFS), each element of which has truth membership hesitant function, indeterminacy membership hesitant function and falsity membership hesitant function and the values of these functions lie in several possible closed intervals in the real unit interval [0,1]. In contrast with NS and HFS, IVNHFS can be more flexibly used to deal with uncertain, incomplete, indeterminate, inconsistent and hesitant information. In this study, I propose the novel correlation coefficient of IVNHFSs and my paper discusses its properties. Then, based on the novel correlation coefficient, I develop an approach to deal with multi-attribute decision-making problems within the framework of IVNHFS. In the end, a practical example is used to show that the approach is reasonable and effective in dealing with decision-making problems.

On Solving the Fuzzy Goal Programming and Its Extension (불분명한 북표계확볍과 그 확장)

  • 정충영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1986
  • This paper illustrates a new method to solve the fuzzy goal programming (FGP) problem. It is proved that the FGP proposed by Narasimhan can be solved on the basis of linear programming(LP) model. Narasimhan formulated the FGP problem as a set of $S^{K}$LP problems, each containing 3K constraints, where K is the number of fuzzy goals/constraints. Whereas Hanna formulated the FGP problem as a single LP problem with only 2K constraints and 2K + 1 additional variables. This paper presents that the FGP problem can be transformed with easy into a single LP model with 2K constraints and only one additional variables. And we propose extended FGP :(1) FGP with weights associated with individual goals, (2) FGP with preemptive prioities. The extended FGP has a framework that is identical to that of conventional goal programming (GP), such that the extended FGP can be applied with fuzzy concept to the all areas where GP can be applied.d.

  • PDF

The possibility of failure of system component by fuzzy sets (Fuzzy Sets을 이용한 시스템 부품의 고장가능성 진단에 관한 모델)

  • Kim, Gil-Dong;Jo, Am
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.2
    • /
    • pp.44-54
    • /
    • 1992
  • In conventional fault-tree analysis, the failure probabilities of components of a system are treated as exact values in estimating the failure probability of the top event. For the plant layout and systems of the products, however, it is often difficult to evaluate the failure probabilities of components from past occurences, because the environments of the systems change. Furthermore, it might be necessary to consider possible failure of components of the systems even if they have never failed before. In the paper, instead of the probability of failure, we propose the possibility of failure, viz, a fuzzy set defined in probability space. Thus, in this paper based on a fuzzy fault-tree model, the maximum possibility of system failure is determined from the possibility of failure of each component within the system according to the extension principle.

  • PDF