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Abstract

After introducing many different types of prefilter convergence, we introduce an universal method to define various
notions of compactness using cluster point and convergence of a prefilter and to prove the Tychonoff theorem using
characterizations of ultra(maximal) prefilters.
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1. Introduction 2. Filter Convergence

In a fuzzy topological space, there exist many differ-

In general topology the notion of convergence is on&nt types of prefilter convergence depending on a notion of
of main concepts which play essential role in theoreticdt€ighborhood of a point or a fuzzy point. First we intro-
development and its applications. In fact the fundamerfluce various notions of neighborhood in a fuzzy topologi-
tal notions, limit and continuity in topology are describedcal space.

naturally in terms of convergence. Particularly, filter ConNeighbourhood(l) [18]

vergence and net convergence are very useful notions to .
g g y Let X be afuzzy topological space and= X. Afuzzy

deal with compactness in terms of cluster points and limit . i : . .
points P P setV in X is a neighborhood aof: if there exists an open

) setU in X such thal/ C V andU(z) = V(x) > 0.
In fuzzy topology also the notion of convergence plays

an important role to deal with limit and continuity. More- Neighbourhood(2) [1]

over it is interesting to know that there exist various notions A fuzzy setV in X is a neighborhood of a fuzzy point
of convergence in a fuzzy topology[1,3,4,5,8,9,14,18]. Op = (z,) (0 < a < 1) if there exists an open s&tin X
the other hand there exist various notions of compactnessdoch thap C U C V.

a fuzzy topology using open sets, prefilters, fuzzy nets and

functors between fuzzy topological spaces and topologichi€ighbourhood(3) [16]

spaces[2,6,7,10,11,15,17]. This means that we can discuss A fuzzy setV in X is a neighborhood of a fuzzy point

various types of compactness in fuzzy topology in terms df = (2, @) (0 < a <1) if there exists an open sétin X
convergence. suchthap € U CV (p € U meansy < U(x)).

In this chapter, first we introduce many different typesyeighbourhood (4) [14]
of prefilter convergence. After finding an universal method 5 fuzzy set V in X is a neighborhood (Q-

to define the notions of compactness using cluster pom%ighborhood) of a fuzzy point= (z,a) (0 < a < 1) if

and convergence of a prefilter, we prove the Tychonoff thepere exists an open sktin X such thapqU C V (pqgU
orem using characterizations of ultra(maximal) prefiltersmeansy(x) ta>1). -

In [2], the Tychonoff theorems foxx -compactness and

strong compactness, respectively, were proved using tReemark. Wang [17] defined another notion of neighbor-
Alexander Subbase Theorem. It is interesting to note thAbod in terms of closed set as follows : A closed &et
our approach provides a simple proof for the Tychonoff thein X is a neighborhoodR-neighborhood) of a fuzzy point
orems as good extensions of compactness in a topologigak= (z,«) (0 < a < 1)if p Z C. Infact, it is easy to see
space. Various kinds of examples in a fuzzy topologicahat the notions Q-neighborhood and R-neighborhood are
space will be followed. equivalent.
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Now we introduce various types of prefilter conver-
an universal scheme to define a notion of ultrafilter com-

gence.

Letz € X,a € (0,1] or (0,1) andp = (z, «), a fuzzy
point X. We denote\V?(p) = the collection of all neighbor-
hood ¢)s of p for eachi = 1,2, 3,4. Fori = 1, we mean
b= (I7 1)

Convergence(l), (II), (1), (IV) : We say thatp is a
cluster pointof a prefilter 7 on X if U N F # § for all
U € N(p)andF € F. ltis said that a prefilte on X
converges to @and write ¥ — p, if N'(p) C F. Clearly, if
F — pin X, thenp is a cluster point ofF.

Convergence(V) : We say thatp is acluster pointof
a prefilter7 on X if UqF forall U € N(p) andF € F
(UqF means thal/(z) + F(xz) > 1 for somez € X).
We say that a prefiltef~ on X converges to @nd write
F — p, iffor any neighborhood’ of p, there existd” € F
such that for every” C F, U(x) + F'(x) > 1 for every
x € SuppF’. We note that ifF — pin X, thenpis a
cluster point ofF.

Convergence(VI) : A prefilter 7 on X is called an-
prefilter if F does not contain the constant functiog,
(0 < a < 1). We note that a prefilteF on X is ana-
prefilter iff F~1(«, 1] # () for everyF € F. We denote by

F(X), P(X) the collection of filters, respectively prefilters

on X. We denote byP*(X) the collection of all-filters
on X . We define a correspondence: P*(X) — F(X)
by to(F) = {U a,1] : U € F}. Let (X, ) be a fuzzy
topological space. For each € [0,1), we consider the
topology:s (6) = {U Y (a,1] : U € §} on X. Let (X, 1)
be a topological space. For eache [0,1), we consider
the fuzzy topologyv, (1) = {U € IX : U Y(a,1] € 7}
on X. We say thap = (z, «) is aa-cluster pointof a pre-
filter 7 on X if F is a«-prefilter andr is a cluster point of
the filter 1o (F) in (X, 1 (6)). We say thatF a-converges
to p = (z,«), denote byF % p, if F is aa-prefilter and
the filter., (F) converges ta: in (X, 1, (9)).

Theorem 2.1. Let {f; : X — X} be a family of fuzzy
continuous maps. Assume that has an initial fuzzy
topology with respect td f;}A. For any given conver-

gence among Convergences (1), (1), (1), (IV), (V) and

In this section we introduce a number of conditions for

pactness and to obtain the Tychonoff theorem.

Let X be a fuzzy topological space. Let € (0,1]
or (0,1). Let Sx C P(X) LetCx C Sx x Px and
Lx C Sx x Px,wherePy = {(l‘,Oé) S X}

(P1) (F,p) € Cx ifand only if there exist§/ € Sx such
thatG > Fand(G,p) € Lx

(P2) for every elementF € Sy, there exists a maximal
element inSx containingF with respect to inclu-
sion.

(P3) if f: X — Y isamap andF is a maximal element
in Sx, thenf(F) is a maximal element iy .

(P4) (F,p) € LH.Xi ifand only if (m; (F), m;(p)) € Lx,
for eachi.

From now on, we assume that every fuzzy topological
spaceX is equipped with a triple§Sx, Cx, Lx) satisfy-
ing the conditionsk1), (P2), (P3)and P4).

Definition 3.1. A space X is called anultrafilter -
compact spaci for every maximal elemerit in Sx, there
existsp € Px such thai{l{,p) € Lx.

Theorem 3.2. A spaceX is ultrafilter a-compact if and
only if for every elementF in Sx there existe € Py
such tha{F,p) € Cx.

Proof. (=) For any elemenf in Sx, there exists a max-
imal element/ in Sx containingF with respect to in-
clusion by P2). Since there existp € Px such that
(U,p) € Lx,andF CU, (F,p) € Cx by (PD).

(<) LetU be a maxiaml| element i§x. Then there
existsp € Px such thaf{i/, p) € Cx. Hence(ld,p) € Lx
by (P1).

Theorem 3.3. (Tychonoff) Let {X;}» be a family of
spaces. Then the product spafgX; is ultrafilter o-
compact if and only if so is{; for eachi € A.

Proof. (=) For eachi € A, let A be a maximal element
in Sx, and F the prefilter generated bfyr;~*(A) : A €

(V) F — pin X if and only if £;(F) — fi(p) in X; A}. LetU be a maximal element iSHiXi containingF

for anyi € A.

by (P2). Since[],X; is ultrafilter a-compact, there ex-
istsp € PH x, such that(U,p) € LH.Xi and hence,

Proof . It is routine. For convergence (V), we use the facgm(u) m-(p)j € Ly, by (P4). Note thatd — mi(F) =

pgN?_, A; ifand only ifpgA; foralli = 1,- - -, n. For con-

vergence (VI), we use the fact that the correspondegce

preserves initial families. (Cf. Theorem 1.5 in [6]).

3. Ultra Compact Spaces

270

(<) Let U be a maximal element iSHYXi' Then
m;(U) is a maximal element itv’x, for each, by (P3).
Let (m;(U), mi(p)) € Lx, for eachi. Letp = ((z;), @),
wherep; = (z;,«). Then by P4) (U, p) € LH,X,,'

We introduce one more condition:
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(P9 if f: X — Y is fuzzy continuous, then wheneverTheorem 4.4. Let f : X — Y be a map. IfF is an ultra-
(F,p) € Lx, (f(F), f(p)) € Ly. filter on X, then f(F) is an ultrafilter ony”.

Now we introduce a characterization of an ulirdilter.

Theorem 3.4. Let f : X — Y be a fuzzy continuous onto (See [12] for details)

map. Assume thak’ andY satisfy P3) and £5). If Xis
ultraa-compact, then so i§’.

Definition 4.5. A prefilter 7 in X is called ana-filter
Proof. Itis obvious by a smilar method in the proof of The-(() < a < 1) if infper hgt(F) = «, wherehgt(F) =

orem 3.3. sup,ex #r(x), the height of . An o-filter 7 on X is

Assume that every fuzzy topological spacgis called ana-filter if Fo, = F~Y(a,1]) # 0 for every
equipped with a triplg Sy, C'x, Lx) satisfies the condi- £ € 7, whereF, is thea-cut of .
tions 1), (P2), (P3), (P4) and P5).

Definition 3.5. A spaceX is called arultrafilter compact Definition 4.6. An a-filter 7 on X is called anultra a-
spacif it is ultrafilter a-compact for each. filter if there is no strictly finen-filter than 7.

By Th 4 h he followi It.
y Theorem 3.4, we have the following result Definition 4.7. Let F be a prefilter onX andS C X. S

Theorem 3.6. is calleda-included inF if every fuzzy setd in X with

a-cut S is contained inF.
1. Let f : X — Y be a fuzzy continuous onto map. If

X is ultrafilter compact, then so K.

Theorem 4.8. Let X be a set and- ana-filteron X. Then

2. The Tyconoff theorem holds for ultrafilter compact . .
the following are equivalent.

spaces.
1. Fis an ultraa-filter.

2.1f Aec IX¥andA ¢ FthenAN F < « for some
4. Ultrafilters FeF.

. Cic o .
The characterization of an ultrafilter on a $&tn terms 3. I 5 € X then eitherS or 5™ is a-included in.

of a subset o is important to calculate in many problems
using ultrafilters. In this section we introduce character-
izations of ultra prefilter depending on types of preﬁlterTheo.rem 4'9.' Let X and}f .be sets an}f : X — ¥ amap.
respectively, and use them to obtain results in Section g.}- IS ana—ﬁllter (resp.oi—ﬁ_lter, uItran-ﬂ.Iter) on X, then
First, we introduce a characterization of a prefilter. (Se (#) is anafilter (resp.a-filter, ultraa-filter) on'Y'.
[12] for details)
Remark. G.Wang [17] defined a notion of N-compactness
Definition 4.1. A prefilter F on a setX is anultrafilter if ~ in terms ofa-filter: A fuzzy subset inX is N-compact iff
there is no strictly finer prefilter thaf. eacha-filter 7 (o € (0, 1]) has a cluster poirtr, ) € A,
wheneverA € F. He proved the Tychonoff theorem for
N-compactness using-net. We note that if we can have
Definition 4.2. Let 7 be a prefilter onX. We say thata 5 characterization of an ultra-filter similar to Theorem
subsetY” of X is included inF / if every fuzzy setinX' 4 g8 to obtain Theorem 4.9, the proof of the Tychonoff the-
with supportY” is an element of". orem for N-compactness should be much simpler than the
Wang'’s proof in [17].
Theorem 4.3. Let F be a prefilter onX. Then the follow- Now, we introduce a characterization of an ultra
ing are equivalent, prefilter

1. Fis an ultrafilter.

Definition 4.10. [13] A «-prefilter 7 on X is called arul-
tra a-prefilter (=maximala-prefilter) if there is no strictly
finer a-prefilter than?.

2. Let A c I, If A ¢ F, then there is som& ¢ F
such thatd N F = 0.

3. LetT C X. Then eithefl” or T is included inF.

271



International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 4, December 2010

Definition 4.11. [13] Let F be a-prefilter onX. We say For a fuzzy topological spac¥, takea € (0,1] or (0, 1)
that a subset T aX is a- included in F if every fuzzy set and letSxy = P(X), Cx = {(F,p) € Sx : pis aclus-
Ain X with A=%(a, 1] = T is an element of". ter point of ¥ in X} andLx = {(F,p) € Sx : F — p
in X}, wherep € Px = {(z,a) : z € X}. Itis known
[11] that (P1) and @3) hold for the triple(Sx,Cx, Lx)
Theorem 4.12.[13] Let F be aa-prefilter. Then the fol- for convergence (I11). By similar methods in [12], we can
lowing statements are equivalent. show that P1) and P3) hold for convergence (l1), (1ll),
respectively. Moreover, it is routine to check that the con-
ditions (P2), (P4) and P5) hold for convergence (ll), (111,
2. For everyA € I¥ such thatd=*(a,1] # 0, if A ¢  (IV), respectively.
F,then there exist§’ € F suchthatA N F C c,.

1. Fis an ultrac-prefilter.

C. TheConvergencg(lll) can give a different type of ultra-
3. For everyT C X, eitherT or TC is a-included in filter compactness as follows. A fuzzy poipt= (z,a) is
z. called ana-cluster pointof a prefilterF on X if for every
U € N(p) and for everyF € F, (UNF), # 0. We note
that if a prefilter7 on X has anx-cluster point, then it is
Theorem 4.13.Let f : X — Y be amap. IfFisa ana-filter. Leta € (0,1) andSx= the collection of all
a-prefilter (resp. ultrax-prefilter) on X, then f(F) is a afiltersonX. LetCx = {(F,p) : pis ana-cluster point
a-prefilter (resp. ultrax-prefilter) onY". of F}andLx = {(F,p) : F — pin X}.
_ _ _ (P1) holds. Let(F,p) e Cx andletB ={UNF :U €
Proof.  Supposef(F) is not ana-prefilter, i.e. ¢, € N(p),F € F}, which is a prefilter base off. Then the
f(F). Then f(F) C c, for someF < F and hence prefiterg = [B] is ana-filter andg — z in X. Itis easy
I c f_l(ca? = ca. Therefore we have, € F, which 4 gee that the converse is true. By routine process, we can
is a contradiction. LetF be an ultraa-prefilter on X.  ghow that P2) holds. By Theorem 2.6 in [11], we have
Let 7 C YV andS = f~}(T) C X. Then eitherS (p3) Clearly (P4) and £5) hold by Theorem 2.1. Min and
or S¢ is a-included in 7 by Thoerem 4.12.  Suppose kjm [11] called an ultrafiltern-compact space in this sec-

S is a-included inF. Let A be a fuzzy set iV’ with 5 a5 a stable fuzzy compact and showed the Tychonoff
A7 Ye,1] = T. PutB = f~'(A). ThenB~'(a,1] =  theorem.

(A Ya,1]) = f~YT) = S and henceB € F. Now
f(B) = f(f~*(A)) C A and henced € f(F). Suppose Remark 5.1 Min and Kim [11] compared ultrafilter:-
S¢ is a-included inF. Then by a similar argument we cancompactness with other notions of compactness:

show thatI'® is a-included inf (F). Thereforef(F) is an strong fuzzy compact> ultrafilter compacts fuzzy compact

ultra a-prefilter onY” by Theorem 4.12. None of the arrows is revisible. Hence by Theorem 5.7
in [17] strong fuzzy compactness, ultrafilter compactness

o and fuzzy compactness are equivalent in a Hausdorff fuzzy
5. Applications topological space.

. ) ] D. ConvergencegV)

Using the universal scheme for ultrafilter compactnessgy, 5 fuzzy topological spac¥, takea € (0,1] and let
we introduce various types of an ultrafilter compact spaceg  _ P(X), Cx = {(F,p) € Sx : pis a cluster point
depending on prefilter Convergences (1), (I1), (1), (IV), of £ in X}andLy = {(F.p) € Sx : F — pin X},
(V) and (V1), respectively definded in Section 2. We Sho"‘(/vherep € Py = {(z,a) : = € X}. The condition P1)
that each notion of ultrafilter compactness satisfies the copyjiows form Theorem 13.2 [14]. The conditioR?) can
ditions 1), (P2), (P3), (P4 and P3). This means each e gptained by a usual method using Zorn’s Lemma. The
prefilter convergence provides Theorems 3.2, 3.3, 3.4, 33 ndition P3) follows form Theorem 4.4. The conditions
and 3.6. (P4) and @5) follow from Theorem 3.7 and Proposition

A. Convergence(l) 3.5 [8], respectively.
For a fuzzy topological spac¥, let Sy = P(X), Cx =
{(F,p) € Sx : pis a cluster point ofF in X} and
Lx = {(F,p) € Sx : F — pin X}, wherep € Px =
{(z,1) : # € X}. Itis known [4] that P1) and @3) hold
for the triple(Sx,Cx, Lx). By Zorn’s Lemma, it is easy
to check that the conditiorP@) holds. By Proposition 2.1,
the condition P4) holds. Clearly the conditiorP®) holds.

E. Convergence(VI)

Fora € [0, 1), let Sx = the collection of alk-prefilters on
X. LetCx = {(F,p) : pis aa-cluster point ofF in X'}
andLx = {(F,p) : F % pin X}. (P1) holds by Propo-
sition 5.2 in [13]. By routine work, we can show th&2)
holds. P3) holds by Theorem 4.13. Moreover it is easy to
check thatP4) and P5) hold, since the correspondence

B. Convergence(ll), (111), (IV) preserves initial sources. (Cf. Theorem 1.5 in [6])
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Remark 5.2 De Prada Vincente and Macho Stadler [13Proof. (1) Let () C A for a filter A on X. Then
showed that a fuzzy topological spaC¥, §) is ultrafilter U C w, 0ta(U) C we(A), ie. U = wa(A). Hence
a-compact for Convergence (VI) iff it is strong fuzzy com-¢, () = 1o o wa(A) = A.

pact. In [2], the Tychonoff theorems far-compactness (2) Supposé is a prefilter onX such thatv, (A) C G.
and strong compactness, respectively, were proved usifipen there exist€7 € G such thatG ¢ w,(A), i.e.
the Alexander Subbase Theorem. Therefore our approa€ir!(a, 1] ¢ A. HenceA = 1, o wo(A) C 1o (G), which
using ultrafilter provides a different and simple proof foris a contradiction. By a similar method we obtain the re-
the Tychonoff theorem. sults related te}, andw},.

Proposition 6.4. Let F be a filter on a topological space
(X, 7). LetF — zin X. Then

1. wo(F) (resp.w(F)) — (z,a)in (X,w(r)) for each
a € [0,1] for Convergences (1), (1), (1), (IV) and
(V). For Convergence (l), we mean= 1.

6. Good extensions

In this section we show that various types of ultrafil-
ter compactness depending on the notions of convergence
of prefilter introduced in Section 5 are good extensions of 2. w,(F) — (z,«)in (X,w(r)) for Convergence (VI).
compactness in a topological space.

Let F be ana-prefilter on a seX (0 < a < 1). Then
we know that, (F) = {F~(a,1] : F € F} is afilter on
X. We note that &-prefilter means a prefilter. L& be a
filter on a setX. Then fora € [0,1),w,(F) = {F € IX :
F~Y(a, 1] € F} is ana-prefilter onX.

Proof. (1) First we show for Convergences (I) and (II).
LetU : (X,7) — I be alower semicontinuous map such
that U(X) > «. Then there existsd € F such that

A C U («a,1] which impliesU~*(a, 1] € F. Hence

U € w(F). Thereforew,(F) — (z,a) in (X,w(r)).

For other Convergences, we show the results by a similar

method.
Proposition 6.1. Let 7, F be ana-prefilter, respectively a (2) Sincery ow, (F) = F ande, (w(1)) = 7, the result
filter on X anda € [0,1). Then follows.

1. 14 0 we(F) = F. By definitions, we have the following:

Proposition 6.5. Let F be ana-prefilter on a fuzzy topo-
2. F C wa 0 1o(F) and hencer = w, o ta(F) foran  jogical space X, ) anda € [0,1). Let F — (z, ) in X.

ultrafilter F. Then
Proof. It is straightforward by definitions. 1. 1o(F) — 2 in (X, 10(9)) for Convergence (1).
Let F be ana-filter on a setX (0 < a < 1). Then 2. 13(F) — xin (X, 143(5)) for Convergence (lll) for
Lo (F) = {F'[a,1] : F € F}is afilter onX. LetF be eachd < a.
afilter on a set¥ (0 < o < 1). Thenw,*(F) = {F € 3. ta(F) — zin (X, 14 (5)) for Convergence (V).

I* : F~1[a,1] € F}is ana-filter on X. By a routine

work we have the following: Proposition 6.6. A topological spacéX, ) is compact iff

a fuzzy topological spaceX,w(r)) is ultrafilter compact
Proposition 6.2. Let F, F be ana-filter, respectively a with respect to the notions in Parts A, C and D in Section
filter on X anda € [0,1). Then 5, respectively.

Proof. (=) For Parts A and D, lel/ be an ultrafilter in
P(X). Thent,(U) is an ultrafilter inF(X) for « € [0,1).
2. F Cw? 0% (F) and henceF = w? o % (F) for an Since (X, ) is compact,.,(i{) — =z in the topological
ultrafilter . spaceX for somexz € X. Henceld = w,0to(U) —
(z,a) in (X,w(r)) for eacha € (0,1]. The reasult for
Part C follows by a similar argument.
" («=) For Parts A and D, leA be an ultrafilter in?(X).
Proposition 6.3. Thenw,(A) is an ultrafilter in P(X) for « € [0,1).
) _ Since w,(A) is an a-prefilter on X, w,(A) — (z, @)
1.IfUis an ultrafllterlnP(X), then., (U) ande;, U) i, (X,w(r)) by Proposition 6.4. By definitionA —
are ultrafilters in’(X) for a € [0, 1). la owa(A) — zin (X, 7). Hence the result follows. The
result for Part C follows by a similar argument.

1. ow(F)=F.

2. If A is an ultrafilter in F(X), thenw,(A) and
w’(A) are ultrafilters inP(X) for a € [0, 1). By the above Proposition 6.6, we have the following:
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Corollary 6.7. The ultrafilter(«-)compactness defined in [11]
Parts A, C and D, respectively, is a good extension of the
compactness in a topological space. [12]
Remark. The result for Part C can obtained also from Re-
mark 5.1.

[13]
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