• 제목/요약/키워드: fuzzy event

Search Result 87, Processing Time 0.03 seconds

The Concept of Fuzzy Probability

  • Sook Lim;Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.111-125
    • /
    • 1992
  • Since Zadeh's definition for probability of fuzzy event is presented, alternative definitions for probability of fuzzy event is suggested. Also various properties of these new definitions have been presented. In this paper it is our purpose to show the works continued by finding a natural definition of a fuzzy probability measure on an arbitrary fuzzy measurable space. Thus, the main process is to observe fuzzy probability measure to be qualified by weak axioms of boundary condition, monotonicity and continuity suggested by Klir (1988). Especially, we will show that these axioms are satisfied through in succession of modifications from the Yager's method.

  • PDF

Application of Fuzzy Transition Timed Petri Net for Discrete Event Dynamic Systems (퍼지 트랜지션 시간 페트리 네트의 이산 사건 시스템에 응용)

  • 모영승;김진권;김정철;탁상아;황형수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.364-364
    • /
    • 2000
  • Timed Petri Net(TPN) is one of methods to model and to analyze Discrete Event Dynamic Systems(DEDSs) with real time values. It has two time values, earliest firing time ($\alpha$$_{i}$) and latest firing time ($\beta$$_{I}$) for the each transition. A transition of TPN is fired at arbitrary time of time interval ($\alpha$$_{I}$, $\beta$$_{i}$). Uncertainty of firing time gives difficulty to analyze and estimate a modeled system. In this paper, we proposed the Fuzzy Transition Timed Petri Net(FTTPN) with fuzzy theory to determine the optimal transition time (${\gamma}$$_{i}$). The transition firing time (${\gamma}$$_{i}$) of FTTPN is determined from fuzzy controller which is modeled with information of state transition. Each of the traffic signal controllers are modeled using the proposed method and timed petri net. And its Performance is evaluated by simulation of traffic signal controller. controller.

  • PDF

Design of Optimized Pattern Classifier for Discrimination of Precipitation and Non-precipitation Event (강수 및 비 강수 사례 판별을 위한 최적화된 패턴 분류기 설계)

  • Song, Chan-Seok;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1337-1346
    • /
    • 2015
  • In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong;Yoo, Kwae Hwan;Choi, Geon Pil;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.702-710
    • /
    • 2016
  • Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

NORMAL FUZZY PROBABILITY FOR GENERALIZED QUADRATIC FUZZY SETS

  • Kim, Changil;Yun, Yong Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.217-225
    • /
    • 2012
  • A generalized quadratic fuzzy set is a generalization of a quadratic fuzzy number. Zadeh defines the probability of the fuzzy event using the probability. We define the normal fuzzy probability on $\mathbb{R}$ using the normal distribution. And we calculate the normal fuzzy probability for generalized quadratic fuzzy sets.

Using Fuzzy Logic for Event Detection in Soccer Video

  • Thanh Nguyen Ngoc;Giao Le Ngoc
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.119-121
    • /
    • 2004
  • Video event detection has become an essential application in multimedia computing. For sports video, salient events are usually detected by analyzing video sequence by specific decision rules. However in many kinds of sports video (e.g. soccer), the game contains continuous actions, in which the boundaries of shots, scenes are uncertain. So the conventional analyzing methods using crisp decisions are not efficient. Fuzzy logic is a natural approach that can tackle this problem. In this paper, we present a new approach using fuzzy technique for event detection in soccer video. The experiment shows encouraging results for this method

  • PDF

A fuzzy reasonal analysis of human reliability represented as fault tree structure

  • 김정만;이상도;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • In conventional probability-based human reliability analysis, the basic human error rates are modified by experts to consider the influences of many factors that affect human reliability. However, these influences are not easily represented quantitatively, because the relation between human reliability and each of these factors in not clear. In this paper, the relation is expressed quantitatively. Furthermore, human reliability is represented by error possibilities proposed by Onisawa, which is a fuzzy set on the interval [0,1]. Fuzzy reasoning is used in this method in order to obtain error possibilities. And, it is supposed that many basic events affected by the above factors are connected to the top event through Fault Tree structure, and an estimate of the top event expressed by a member- ship function is obtained by using the fuzzy measure and fuzzy integral. Finally, a numerical example of human reliability analysis obtained by this method is given.

  • PDF

Risk Analysis System in Fuzzy Set Theory (퍼지 집합론을 이용한 위험분석 시스템)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.29-41
    • /
    • 1990
  • An assessment of risk in industrial and urban environments is essential in the prevention of accident and in the analysis of situations which are hazardous to public health and safety. The risk imposed by a particular hazard increases with the likelihood of occurence of the event, the exposure and the possible consequence of that event. In a traditional approach, the calculation of a quantitative value of risk is usually based on an assignment of numerical values of each of the risk factors. Then the product of the values of likelihood, exposure and consequences called risk score is derived. However vagueness and imprecision in mathematical quantification of risk are equated with fuzziness rather than randomness. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the area of systems safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique based on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF

A Study on Trend Impact Analysis Based of Adaptive Neuro-Fuzzy Inference System

  • Yong-Gil Kim;Kang-Yeon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.199-207
    • /
    • 2023
  • Trend Impact Analysis is a prominent hybrid method has been used in future studies with a modified surprise- free forecast. It considers experts' perceptions about how future events may change the surprise-free forecast. It is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using adaptive neuro-fuzzy inference system (ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes.

Fuzzy Fault Tree Analysis with Natural Language

  • Onisawa, Takehisa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.5-15
    • /
    • 1997
  • This paper mentions a fault tree analysis using not probability but natural language and fuzzy theory, Reliability estimate of each basic event and dependence level estimate among subsystems are expressed by linguistic terms. Analysis results are also expressed by natural language. The meaning of linguistic terms is expressed by a fuzzy set. In the presented analysis approach parametrized operations of fuzzy sets are considered so that analyst's subjectivity can be introduced into the analysis. This paper gives the Chernobyl accident as an example of the fuzzy fault tree analysis using linguistic terms.

  • PDF