• Title/Summary/Keyword: fuzzy dynamics

Search Result 305, Processing Time 0.028 seconds

An Adaptive Fuzzy Control System for the Speed Control of the Autonomous Surface Vehicle with Nonaffine Nonlinear Dynamics (비-어파인 비선형 동특성을 갖는 무인 자율 이동 보트의 속도 제어를 위한 적응 퍼지 제어 계통)

  • Park, Young-Hwan;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, an adaptive fuzzy control system is proposed for the speed control of the ASV (Autonomous Surface Vehicle) with nonaffine nonlinear system dynamics. We consider the turning speed of the screw propeller to be the control input instead of thrust so that we do not have to know the exact function between turning speed and thrust. But in this case, the ASV becomes a nonaffine nonlinear system because thrust is a nonlinear function of the turning speed. To solve this problem, we propose a Takagi-Sugeno fuzzy-model-based control system and simulation studies are performed. Simulation results show the effectiveness of the proposed control scheme.

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Development of Fuzzy Controller for High Performance Solar tracking of PV System (PV 시스템의 고효율 태양 추적을 위한 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.315-318
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy control order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Design of missile roll controller based on the fuzzy logic (퍼지논리를 이용한 유도탄 롤 제어기 설계)

  • 전병율;남세규;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1063-1067
    • /
    • 1993
  • Fuzzy logic is applied to a roll autopilot for missiles. Fuzzy rules are made so that the response duplicates that of the conventional control law for some flight condition. A scaling factor of the fuzzy controller is then scheduled by the missile velocity and altitude information to cope with the variation of the roll dynamics from that flight condition. By computer simulations and calculation of the stability margin, it is shown that the fuzzy control is robuster than the conventional one over the flight envelope even though two control laws work similarly for some flight conditions.

  • PDF

Fuzzy Precompensated PI Controller for Inverter-type Air-Conditioner (인버터형 에어컨의 온도 제어를 위한 퍼지 전단 보상된 PI 제어기)

  • 장보인;이선우;정문종;유장현;김상권;박윤서
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.185-188
    • /
    • 1997
  • In this paper, a fuzzy precompensated PI controller for inverter-type air-conditioner is presented. The presented control scheme is composed of a fuzzy logic precompensator and PI controller, in which two control schemes are serially connected. The rules of the fuzzy precompensator is designed to improve the performance by considering the nonlinear characteristics of a temperature dynamics. The experimental results show the effectiveness of the proposed controller.

  • PDF

Modularized Gain Scheduled Fuzzy Logic Control with Application to Nonlinear Magnetic Bearings

  • Hong, Sung-Kyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.384-388
    • /
    • 1999
  • This paper describes an approach for synthesizing a modularized gain scheduled PD type fuzzy logic controller(FLC) of nonlinear magnetic bearing system where the gains of FLC are on-line adapted according to the operating point. Specifically the systematic procedure via root locus technique is carried out for the selection of the gains of FLC. Simulation results demonstrate that the proposed gain scheduled fuzzy logic controller yields not only maximization of stability boundary but also better control performance than a single operating point (without gain scheduling)fuzzy controller.

  • PDF

Implementation of the Fuzzy Controller for DC Servo Motor (직류 서보 모터용 퍼지 제어기의 실현에 관한 연구)

  • 이오걸;송호신;이준탁;우정인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.4
    • /
    • pp.60-68
    • /
    • 1992
  • In this paper, an implementation approach of Fuzzy Position Controller for DC servo motor which requires the faster and more accurate dynamics is presented. Fuzzy position controller implemented with 80286 microprocessor and DT 2801 board consists of an adjustment routine of optimal scale factors and a Fuzzy inference routine of optimal control signals. Comparison to conventional PD controllers, the control performances of proposed Fuzzy controller such as reaching time, overshoot, and disturbance adaptability are substantially improved.

  • PDF

Fuzzy Controller Development for Efficiency Improvement of Photovoltaic Tracking System using Sensor (센서방식 태양광 추적 시스템의 효율 향상을 위한 퍼지제어기 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Jung, Byung-Jin;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.217-218
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Tracking System of Photovoltaic Generation Using DFC Controller (DFC 제어기를 이용한 태양광 발전의 추적시스템)

  • Jung, Byung-Jin;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.199-201
    • /
    • 2008
  • In this paper proposed the solar tracking system to use direct fuzzy control order to increase an output of the PV (Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a DFC(Direct Fuzzy Control)controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Fuzzy control of drum level of boiler in thermal power plant (화력발전소 보일러 드럼 수위 퍼지 제어)

  • 변승현;박두용;김은기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.195-198
    • /
    • 1996
  • The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant setpoint regardless of disturbance such as main steam flow. The initial response of the drum level loop process is in a direction opposite to the final response. The drum level loop shows inverse response when the power is changed abruptly. We adopt fuzzy controller using knowledge base considering system dynamics for controlling drum level. Finally, the simulation result using the digital simulator for boiler system in Seoul Power Plant Unit 4 shows the validity of fuzzy controller.

  • PDF