• Title/Summary/Keyword: fuzzy approximate reasoning

Search Result 46, Processing Time 0.023 seconds

An Inference Network for Bidirectional Approximate Reasoning Based on an Equality Measure (등가 척도에 의한 영방향 근사추론과 추론명)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.138-144
    • /
    • 1994
  • An inference network is proposed as a tool for bidirectional approximate reasoning. The inference network can be designed directly from the given fuzzy data(knowledge). If a fuzzy input is given for the inference netwok, then the network renders a reasonable fuzzy output after performing approximate reasoning based on an equality measure. Conversely, due to the bidirectional structure, the network can yield its corresponding reasonable fuzzy input for a given fuzzy output. This property makes it possible to perform forward and backward reasoning in the knowledge base system.

  • PDF

Multistage Fuzzy Production Systems Modeling and Approximate Reasoning Based on Fuzzy Petri Nets (다단계 퍼지추론 시스템의 퍼지 페트리네트 모델링과 근사추론)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.84-94
    • /
    • 1996
  • In this work, a fuzzy petri net model for modeling a general form of fuzzy production system which consists of chaining fuzzy production rules and so requires multistage reasoning process is presented. For the obtained fuzzy petri net model, the net will be transformed into some matrices, and also be systematically led to an algebraic form of a state equation. Since it is fond that the approximate reasoning process in fuzzy systems corresponds to the dynamic behavior of the fuzzy petri net, it is further shown that the multistage reasoning process can be carried out by executing the state equation.

  • PDF

A Study on the Stability Assessment and Application of Rock Slope (암반사면의 안정성 평가 및 적용에 관한 연구)

  • 안종필;박주원;오수동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.177-184
    • /
    • 1999
  • In general tile evaluation process of rock slope stability is an ambiguous system which is made up of ideas subjected to practical experience of an expert. This paper aims to propose more effective methods that helps engineers to evaluate the stability of rock slope by using RMR(Rock Mass Rating for the Geomechanics Classification) and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept. the result of this paper is that a rational evaluation of rock slope stability and countermeasures can be achieved thorough RMR. and Stereo-graphic Projection and Fuzzy Approximate Reasoning Concept.

  • PDF

Research on the weld quality estimation system using fuzzy expert system (퍼지 전문가 시스템을 활용한 용접 품질 예측 시스템에 관한 연구)

  • 박주용;강병윤;박현철
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1997
  • Weld bead shape is an important measure for evaluation of weld quality. Many welding parameters have influence on the weld bead shape. The quantitative relationship between welding parameters and bead shape, however, is not determined yet because of their high complexity and many unknown factors. Fuzzy expert system is an advanced expert system which uses fuzzy rules and approximate reasoning. It is a vert useful tool for welding technology because is can process rationally the uncertain and inexact information such as the welding information. In this paper, the empirical and the qualitative relationship between welding parameters and bead shape are analyzed and represented by fuzzy rules. They are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. Weld bead shape is estimated from the welding parameters using fuzzy expert system. The result of comparison between measured values of weld bead by welding experiments and the estimates values by fuzzy expert system shows a good consistancy.

  • PDF

An Improved Method of Method of Fuzzy Approximate Reasoning by Combining Self-Organizing Feature Map and Fuzzy Logic (자기조직화 특성지도와 퍼지로직을 결합한 개선된 형태의 퍼지근사추론에 관한 연구)

  • 이건창;조형래
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 1998
  • This paper proposes a new type of fuzzy approximate reasoning method that combines a self organizing feature map and a fuzzy logic. Previous methods considered only input part to determine the number of fuzzy rules, while this paper considers both input and output parts simultaneously. Our approach proved to improve the inference performance. We also developed a new index for avoiding overlearning which guarantees more accurate results. Experimental results showed that our approach surpasses the performance of Takagi & Hayashi (1991) approach.

  • PDF

Determination of Reinforcement Method for Abandoned Tunnel by Fuzzy Approximate Reasoning (퍼지근사추론에 의한 폐터널의 보강방식 선정)

  • 조만섭
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.275-286
    • /
    • 2004
  • It is studied to select the reinforcement method of an abandoned tunnel which are intersected under the new roadway line. In the various decision makings, the reasonability for the reinforcement method of an abandoned tunnel was estimated using the pair-wise comparison and the fuzzy approximate reasoning to simplify the process of survey research. And there is reflected all the qualitative and quantitative characterizations by investigation items. In order to select the reinforcement method of an abandoned tunnel, 4 characteristic factors of construction, economical efficiency, safety and maintenance were used. Using the simple survey research and pair-wise comparison matrix, the weight of 4 factors was decided. The fuzzy approximate reasoning was used to calculate the quantitative value of each factor And then reflecting each weight to these results, the final reinforcement method of an abandoned tunnel could be determined.

Analysis of Rock Slope Stability Based on Fuzzy Approximate Reasoning (퍼지근사추론법에 의한 암반사면의 안정해석)

  • 기완서;김삼석;주승완
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.153-161
    • /
    • 2001
  • The quantitative evaluation of the stereo graphic projection, the limit equilibrium analysis, the finite difference analysis, the distinct element methocI is a analytical evaluation using many variables. Through the reliability analysis by the point estimation technique, uncertainty of other variables that have an effect on the stability of the rock slo~ was considered. The organized evaluation method of the approximate reasoning concept and using a fuzzy language was developed to confer and analysis the failure factors in planning and constructing the rock slope. Considering the result of the an- alysis, it was demonstrated that stability of entire sections can be evaluated through reliability analysis of point estimation technique. The results of stability evaluation by Fuzzy Approximate Reasoning is generally identical with the results of other existirw; analyses. As mentioned above, general and organized evaluation of special qualities of rock slope is possible using RMR Classification, Stereo Graphic Projection, Limit Equilibriwn Analysis, Finite Difference Analysis, Distinct Element Method, Point Estimation Technique, and Fuzzy Approximate Reasoning.

  • PDF

FUZZY REASONING AND FUZZY PETRI NETS

  • Scarpelli, Helois;Gomide, Fernando
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1326-1329
    • /
    • 1993
  • This work presents a net-based structure to model approximate reasoning using fuzzy production rules, the Fuzzy Petri Net model. The Fuzzy Petri Net model is formally defined as a n-uple of elements. It allows for the representation of simple and complex forms of rules such as rules with conjunction in the antecedent and qualified rules. Parallel rules and conflicting rules can be modeled as well. We also developed an analysis method based on state equations and two fuzzy reasoning algorithms. Finally, the proposed method is applied to an example.

  • PDF

A Multiple-Valued Fuzzy Approximate Analogical-Reasoning System

  • Turksen, I.B.;Guo, L.Z.;Smith, K.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1274-1276
    • /
    • 1993
  • We have designed a multiple-valued fuzzy Approximate Analogical-Reseaning system (AARS). The system uses a similarity measure of fuzzy sets and a threshold of similarity ST to determine whether a rule should be fired, with a Modification Function inferred from the Similarity Measure to deduce a consequent. Multiple-valued basic fuzzy blocks are used to construct the system. A description of the system is presented to illustrate the operation of the schema. The results of simulations show that the system can perform about 3.5 x 106 inferences per second. Finally, we compare the system with Yamakawa's chip which is based on the Compositional Rule of Inference (CRI) with Mamdani's implication.

  • PDF

Design and Implemention of Decision Model for Registration Fee Using the Fuzzy Reasoning (퍼지추론에 의한 등록금 결정 모델의 설계 및 구현)

  • Chung, Hong;Pi, Su-Young;Chung, Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.97-101
    • /
    • 1997
  • In recent years, there have been a number of applications of fuzzy logic in fuzzy reasoning system. The main objective of these applications is to approximate a decision making using the fuzzy reasoning system. This paper designs a fuzzy reasoning model for the decision making of registration fee at a private school, implements it applying for linguistic variables and fuzzy rules, and evaluates the practical availability of the model. The system accepts fuzzy rules, the type of membership functions, the domain of fuzzy sets and hedge, and fuzzifies the linguistic variables to generates fuzzy sets. The fuzzy sets generated are combined to constructs a solution fuzzy set. Finally, the system defuzzifies the solution fuzzy set to calculate a scalar value which is used for decision making.

  • PDF