• 제목/요약/키워드: fuzzy C-means clustering algorithm

검색결과 206건 처리시간 0.02초

빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계 (Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing)

  • 이승철;오성권
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

최적의 유전자 클러스터 분석을 위한 퍼지 c-Means 알고리즘 기반의 베이지안 검증 방법 (Bayesian Validation Method based on Fuzzy c-Means Algorithm for Analysis of Optimal Gene Clustering)

  • 유시호;원홍희;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.736-738
    • /
    • 2003
  • 수천 개의 유전자 발현 정보를 가지고 있는 DNA 마이크로어레이 기술의 발달로 대량의 생물정보를 빠른 시간 내에 분석하는 것이 가능하게 되었다. 유전자를 분석하는 방법 중 하나인 클러스터링 방법은 비슷한 기능을 가진 유전자들을 집단화시켜서 집단내의 유전자들의 기능을 밝히거나, 미지의 유전자를 분석하는데 이용되고 있다. 본 논문에서는 유전자 데이터를 분석하기 위한 퍼지 클러스터링 방법과 이를 효과적으로 검증할 수 있는 베이지안 검증 방법을 제안한다. 퍼지 c-means 알고리즘을 사용하여 클러스터를 생성하고, 클러스터 결과를 기존의 퍼지 클러스터 검증 방법들과 본 논문에서 제안하는 베이지안 검증 방법을 사용하여 비교 평가한다. 베이지안 검증 방법은 각 유전자의 클러스터 멤버쉽을 확률로 이용하여 각 클러스터에 속할 확률을 계산하고, 이 값을 가장 크게 해주는 클러스터 집단을 선택한다. 이 방법은 기존의 퍼지 클러스터 검증 방법들과는 달리 클러스터 수에 무관한 평가가 가능한 장점을 가지고 있다. Serum과 Yeast 데이터에 대한 실험 결과, 베이지안 검증 방법의 유용성을 확인할 수 있었다.

  • PDF

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

후각정보 표현, 부호화 및 클러스터링에 관한 연구 (The study on representation, Digital coding and Clustering of odor information)

  • 김정도;정우석;김동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.598-601
    • /
    • 2004
  • In this paper, we suggest method that change odors to digital data. For this, we selected emotional adjective of odors as olfactory receptor This emotional adjective(expressional receptor) is about 40. Each odors are expressed by adjective equivalent to oneself. Expressed odors as emotional receptor is encoded as proposed method for transmission, and after transmission, It should be decoded for expression again. The applied decoding method is fuzzy c-means clustering algorithm(FCMA). But, because odor data is expressed to 40 dimensions, FCMA uses a lot of computing times and memories. To solve this problem, after we reduce dimension through principal component analysis(PCA), we use FCMA algorithm.

  • PDF

PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계 (Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm)

  • 오성권;장병희
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템을 설계 하고자 한다. 조명이 없는 주위 상태 하에서 조도가 낮기 때문에 CCD 카메라를 이용하여 영상을 획득하는 것이 어렵다. 본 논문에서는 낮은 조도에 의해 왜곡된 이미지의 품질을 나이트 비전 카메라와 히스토그램 평활화를 사용하여 향상시킨다. 그리고 얼굴과 비얼굴 이미지 영역 사이에서 얼굴 이미지를 검출하기 위하여 Ada-Boost 알고리즘을 사용한다. 추출된 고차원 특징 데이터를 저차원의 특징 데이터로 변환하기 위하여 데이터 차원축소 기법인 주성분 분석법(Principal Components Analysis; PCA)을 사용한다. 또한 인식 모듈로서 pRBFNNs(Polynomial- based Radial Basis Function Neural Networks) 패턴분류기를 소개한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있다. 조건부는 FCM (Fuzzy C-means) 클러스터링을 사용하여 입력공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 그리고 차분진화 (Differential Evolution; DE) 알고리즘을 사용하여 모델의 파라미터를 최적화 한다.

군집화 기반 정상상태 식별을 활용한 시스템 에어컨의 냉매 충전량 분류 모델 개발 (Development of Classification Model on SAC Refrigerant Charge Level Using Clustering-based Steady-state Identification)

  • 김재희;노유정;정종환;최봉수;장석훈
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.357-365
    • /
    • 2022
  • 냉매 오충전은 에어컨에서 빈번하게 발생하는 고장 모드 중 하나로, 적정 충전량 대비 부족 및 과충전 모두 냉방 성능의 저하를 유발하므로 충전된 냉매량을 정확하게 판단하는 것이 중요하다. 본 연구에서는 퍼지 군집화 기법을 통한 정상상태 식별을 통해 냉매 오충전량을 다중 분류하는 모델을 개발하였다. 정상상태 식별을 위해 에어컨 운전 데이터에 대해 이동 평균 간의 차이를 활용한 퍼지 군집화 알고리즘을 적용하였으며, IFDR를 통해 기존 연구된 정상상태 판단 기법들과 식별 결과를 비교하였다. 이후, 시스템 내 상관성을 고려한 mRMR을 이용해 특징을 선택하였으며, 도출된 특징을 이용해 SVM 기반의 다중 분류 모델이 생성되었다. 제안된 방법은 시험 데이터를 통해 만족할 만한 분류 정확도와 강건성을 도출하였다.

생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법 (The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction)

  • 김정도;김정주;박성대;변형기;;임승주
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

서명 검증을 위한 특정 기반의 FE-SONN (Feature Extraction based FE-SONN for Signature Verification)

  • 구건서
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.93-102
    • /
    • 2005
  • 본 논문은 퍼지 c-means 알고리즘의 퍼지 멤버십 등식을 신경망과 융합한 서명의 특징정보를 기반으로 하는 자율적인 자기조직화 신경망 모델 이용하여 서명 검증하는 방법을 제안하였다. 기존 온라인 서명인식 방법인 함수적 접근법과 매개변수적 접근법의 한계점을 개선하기 위해 자율적 클러스터 특징정보에 의해 서명 패턴 분류 접근법을 제안했다. 본 논문의 중요한 요소는 서명의 특징 정보를 36개의 전역적 특징 정보 정의와 12개의 지역적 특징 정보를 정의하였고, 이를 기반으로 FE-SONN에 학습하여 서명의 진위여부를 검증하는 검증시스템 구현에 있다. 총 713개의 서명을 가지고 실험하였으며, 원본 서명 155개와 시험용으로 위조 서명 180개와 본인이 작성한 진본 서명 378개를 테스트한 결과 97.67$\%$이상의 검증률을 얻을 수 있었다. 그러나 눈으로 식별이 불가능한 정교한 위조서명은 검증 시스템에서도 진위여부 판단에 어려움이 있다.

  • PDF

상황인식 보안 서비스를 이용한 개선된 접근제어 (Improved Access Control using Context-Aware Security Service)

  • 양석환;정목동
    • 한국멀티미디어학회논문지
    • /
    • 제13권1호
    • /
    • pp.133-142
    • /
    • 2010
  • 유비쿼터스 기술의 보편화에 따라 유비쿼터스 환경의 보안 취약성을 해결하기 위한 보안기술의 연구가 주목받고 있다. 그러나 현재의 대다수 보안 시스템은 고정된 규칙을 기반으로 하는 것으로서, 유비쿼터스 기반 사용자의 다양한 상황에 제대로 대응하지 못하는 문제점이 있다. 또한 기존의 상황인식 보안 연구는 ACL (Access Control List) 혹은 RBAC (Role-Based Access Control) 계열의 연구가 많이 수행되고 있으나 보안정책의 관리에 대한 오버헤드가 크고, 또한 예상하지 못한 상황에 대한 대응이 어렵다는 문제점을 보이고 있다. 이에 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링 알고리즘과 퍼지 결정트리를 이용하여 다양한 상황을 인식하고 적절한 보안기능을 제공하는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존의 RBAC 계열의 시스템이 가진 고정 규칙에 따른 문제나 충돌 문제, 관리상의 오버헤드를 개선할 수 있음을 확인할 수 있다. 제안 모델은 헬쓰케어 시스템이나 응급구호 시스템 등 상황 인식을 통하여 사용자의 상황에 적합한 서비스를 제공하는 다양한 애플리케이션에 응용 가능할 것으로 기대된다.