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Abstract

We propose a fuzzy rule based method for struc-
ture preserving dimensionality reduction. This
method selects a small representative sample and ap-
plies Sammon’s method to project it. The input data
points are then augmented by the corresponding pro-
jected(output) data points. The augmented data set
thus obtained is clustered with the fuzzy c-means
(FCM ) clustering algorithm. Each cluster is then
translated into a fuzzy rule for projection. Our rule-
based system is computationally very efficient com-
pared to Sammon’s method and is quite effective to
project new points, i.e., it has good predictability.

1. Introduction

Feature extraction and dimensionality reduction
are two important problems in pattern recognition
and exploratory data analysis. Feature analysis can
improve generalization ability of classifiers by elimi-
nating harmful features or retaining informative fea-
tures, and reduce the space and computational re-
quirements associated with analysis of the data.

Dimensionality reduction can be done mainly in
two ways: selecting a small but important subset of
features; and generating {extracting) a lower dimen-
sional data preserving the distinguishing characteris-
tics of the original higher dimensional data. Dimen-
sionality reduction not only helps in the design of a
classifier, it also helps in other exploratory data anal-
ysis. It can help in both clustering tendency assess-
ment as well as to decide on the number of clusters
by looking at the scatterplot of the lower dimensional
data.

Feature extraction can be viewed as an implicit
or explicit mapping ($) from the p-dimensional input
space to a g-dimensional (usually ¢ < p) output space
[1-4]. There are many methods which differ from each
other in the characteristics of the mapping function
®, how ® is learned, and what optimization criterion
is used. The mapping function can be either linear
or nonlinear.

Recently a large number of artificial neural net-
works (ANN) and associated learning algorithms have
been proposed for feature extraction and multivari-
ate data projection [4]. Although these methods do
not necessarily provide new approaches to feature
extraction and data projection (from the viewpoint
of functionality performed by the networks), they
have some advantages over traditional approaches:
(i) Most learning algorithms and neural networks are
adaptive in nature, thus they are well-suited for many
real environments where adaptive systems are re-
quired. (ii) For real-time implementation, neural net-
works provide good architectures which can be easily
implemented using current VLSI and optical tech-
nologies. (iii) Neural network implementations offer
generalization ability for projecting new data. Yet the
performance of these data projection networks is not
very satisfactory. This has been discussed elsewhere
[5].

In this paper, we present a fuzzy rule based
scheme for structure preserving dimensionality reduc-
tion. The scheme integrates the theory of statisti-
cal subsampling, structure preserving characteristic
of Sammon’s function and the generalization capabil-
ity of fuzzy rule based reasoning. To the knowledge
of the authors no attempt has been made to exploit
the power of fuzzy rule based systems for feature ex-
traction/dimensionality reduction. Unlike Sammon’s
method, the proposed scheme has predictability and
can produce lower dimensional data which are coher-
ent with the original data at a much lower compu-
tational cost. The scheme has been compared with
original Sammon’s algorithm. The proposed scheme
is much more efficient in terms of computation time
and the quality of the projected data is much better
than even the neural network implementations [5].

2. Sammon’s Method

Sammon [2] proposed a simple yet very useful non-
linear projection algorithm that attempts to preserve
the structure by finding n points in g-dimensional
space such that inter-point distances approximate the
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corresponding inter-point distances in p-dimensional
space.

Let X = {x¢|xx = (xx, Taz, -y Thp)s
k = 1, 2,.., n} be the set of n input vectors
and let YV = {ye | y& = (yr1, Yr2y -1 Ukq)
k = 1, 2, .., n} be the unknown vectors to be
found.

Let d}; = d(x;,x;),x5,x; € X and

d; = d(y.,y;),¥i,y; € Y, where d(x;,x;) be the
Euclidian distance between x; and x;. Sammon sug-

gested looking for Y minimizing the error function
E

1 (dy; — di;)?
E = n 2 . (1)
Zi(j dij Z di]

Minimization of E' is an unconstrained optimiza-
tion problem in the nq variables y;;, i = 1, 2, ..., n;
j =1, 2, ..., q. Sammon used the method of steep-
est descent for (approximate) minimization of . Let
v:(t) to be the estimate of y; at the t-th iteration, Vi.
Then y,(t + 1) is given by

1<g

oB() , B T

Oyi; (1) Oysy ()2
where the non-negative scaler constant o (Sammon

called it a magic factor and recommended o ~ 0.3 or
0.4) is the step size for gradient search.

v (t+1) = wy;(t) —

With this method we cannot get an explicit
mapping function governing the relationship be-
tween patterns in p-space and corresponding pat-
terns in q-space. Therefore, it is not possible to
project new points. This method also involves
a large amount of computation, as every step
within an iteration requires the computation of
"("Tvl) distances. The algorithm becomes imprac-
tical for large n. Finally, there are many local
minima on the error surface and it is usually un-
avoidable for the algorithm to get stuck in some
local minimum.

3. Proposed Fuzzy Model For
Data Projection

Sammon’s projection algorithm demands pro-
hibitively large computation for reasonably big data
sets. Apart from this Sammon’s algorithm does not
have predictability, i.e., with every new point the en-
tire data set has to be projected afresh; this in turn
reduces the practical utility of Sammon’s method. If
we can identify the relation between input and the
projected data set by a set of fuzzy rules then the
task of projecting new points becomes a trivial job.
We assume that the data set under consideration has
been obtained from a time invariant probability dis-
tribution. Under this assumption if we extract the
rule base from an adequate sample of the data [5] its

performance is expected to be practically the same
as that of the system identified from the entire data
set. Thus, using the concept of statistical subsam-
pling we can reduce the computational overhead of
the entire system identification. To summarize the
entire process we use the following steps:

1. Select an adequate representative sample X (%),

2. Project the sample X9 by Sammon’s algorithm
to generate Y (),

3. Extract fuzzy rules from (X)) as described
next.

Let the input data set be
X = {x1, X2, ..., X5} C R? and output/projected
data set be Y = {yi1, y2, ..., ¥a} C R?. We define

. p
c = (2R ) ericn
1

i.e., x! is nothing but x,; augmented by y;. We cluster
X* by some clustering algorithm producing a set of
centroids

T )4
V' = {v; - ( ! g % >eR”+q,i=1,...,c}

1

and a partition matrix ( hard or fuzzy ). This clus-
tering result can'be used to extract fuzzy rules [6,11].
Use of clustering results for fuzzy rule extraction is
motivated by the fact that if there is a cluster in the
input space with centroid v and we assume a smooth
relationship between the input and output, then the
points in the output space corresponding to the input
cluster are likely to form a cluster around v{. And
this local input-output relation can be represented by
an if-then fuzzy rule. On the other hand, when v;
is associated with a good cluster in the input-output
space, then this is a signal that when ||x; — vi||is
small, |lyx — vY|| would also be small. This is again
a rough indication that such a cluster represents a
locally continuous or even smooth input-output rela-
tion. In such a case the i-th cluster can be translated
into a rule of the form:

Mamdani-Assilian (MA) models [10] :
CLOSE to vZ then y is CLOSE to v¥;
Takagi-Sugeno (T'S) models [7] : If x is CLOSE to v{
theny = u;(v}).

If x is

Usually the antecedent part, if x is CLOSE to v¥,
is written as a conjunction of p atomic clauses: If x;
is CLOSE to v§ and zy is CLOSE to vj; .... and z,
is CLOSE to v%. The function u;(.) in the TS case
primarily modelps the behavior of the input-output re-
lation in the neighborhood of v!. Rules can also be
generated when Y is clustered, and then the centers
{v¥} are generated as centroids of associated crisp
clusters in X. Similarly, when X is clustered the cen-
ters {v¥} can be generated as centroids of associated
crisp clusters in Y. :
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If a fuzzy clustering algorithm is used then we
can induce fuzzy clusters on different axes by project-
ing the membership values of the extracted clusters.
Suppose the clustering is done in input-output space.
One of the simple ways to assign a membership value
to the input data x; is by

=pu xj:xi ,X*-GX‘ .
Yy J

And then each component of x; C R? is
also assigned the same membership value, i.e.,
p(xi) = p(x),¥3 = 1, 2, ., p.

Before we can actually extract the set of rules we
need to decide on several issues [11}:

) = e { )

1. Choice of the clustering algorithm. Although
there could be many choices we use the fuzzy c-means

(FCM) algorithm.[12]

2. Choice of the clustering domain. There are four
choices: clustering of X, clustering of Y, clustering of
X* or clustering of both X and Y. Each has its ad-
vantages and disadvantages. In this study we decided
to use X*.

3. Deciding on the number of rules or clusters. Re-
searchers used different cluster validity indices like
the Xie-Beni [8] index, Gath-Geva [9] index and so
on. Although these validity indices have been used
for fuzzy rule extraction, they have been developed
for cluster validation without paying attention to the
rule based system identification problem. Use of these
indices for the present problem is debatable. In our
case we have heuristically decided on the number of
clusters.

4. Choice of the structure of the rule base, i.e., decid-
ing on whether MA model or TS model. If TS model
is used, what would be the structure of the right hand
side. The present investigation is restricted to the TS
model only. We have considered two forms for the
right hand side. The first one is the most simple form
of TS model with a constant for the right hand side
of each rule - we call this Scheme-1. The second form
uses a linear combination of input variables which we
call Scheme-2.

5. Estimation of parameters of the model. We shall
discuss it in the appropriate place.

6. Validation of the model. A common practice is
to use overall square error on the training data as an
index for validation. In the present case, we are con-
sidering Sammon’s error for validation of the system.

Let v}, 7« = 1, 2,..., ¢ be the center of the clus-
ters obtained by FCM on X*. We translate the i-th
cluster into a rule of the form : R; : If x; is CLOSE
to v¥ then y, = ui(vf’). Note that “x; is CLOSE to
v?” is essentially an antecedent clause with p compo-
nents. Thus, R; : If z4y is CLOSE to v ... and xy,
is CLOSE to v, then y, = u,(v!). Therefore, each

cluster is translated into 1 rule. (Since yx € RY, R,
can be viewed as q different rules, one for each com-
ponent of yi.) This set of ¢ rules form an initial rule
base for data projection. For an input vector x; € R?
let «; be the firing strength of the rule R; computed
using any conjunction operator (say product). Then
¥e = (Uk1, Yk2, - Ukg)' is computed as
= Doi @ wi(vy)

Ve = (3)

D
3.1 Scheme-1

Here, we take the rules R; = If x¢; is CLOSE to v}

. and zy, is CLOSE to 'Ufp then y; = vf’. In order to
implement the rule base we need to define the mem-
bership function for “z¢; CLOSE to v]”. Here, as an
initial choice we used symmetric triangular functions
having peak ( a point with membership 1), a;; = vj;
and width b;;. Note that a;;’s and b;;’s for all g rules
corresponding to a particular cluster i, are the same.
For the j-th feature, to find b;; we proceed as follows.
We sort v, @ = 1, 2, ..., c. Let the sorted list be

Up i I =1, 2, ..., c. Suppose v}, takes themth
position in the sorted list, i.e., ’Uf’;"]- = 1)‘ then
the width of the fuzzy set assoaated to v7, (i.e., the

m-th fuzzy set on the axis for j-th feature) is

b, = 2% Maac{(vi“;nj —vE )

tm-177?

(i s—vE)h m=2..,c-1,  (4)

by; = 2lmf\2jax{( —(L;—(0.05%(H; — L;)))

(v, —v2 )}, (5)
b, -—Z*Ma:v{('u 1.)
(H; + (0. 05*(H L)) — v%,)}. (6)

Here L; and H; are the lowest and highest value of
feature j. Note that (5) and (6) extend the domain of
the j-th feature which would be helpful for points not
used to train the system. This particular choice of
bi;’s actually extends the domain of the j-th feature
by 10%. This is done keeping in view of two things:
(1) each cluster corresponds to a local relation in the
input-output space so the extended domain should
not be much bigger than [L;, H;] and (2) the clus-
tering is done on some representative sample so the
system may generate points outside [L;, H,].

Then a;;, b;; and vY. are tuned using gradient de-

1
scent to minimize the error S p_; ||k — wil[*

3.2 Scheme-2

In Scheme-1 since the right hand side of each rule
has only a constant value, it may not be adequate
for modeling complex data structures. Our computa-
tional exercise, indeed reveals this. Hence we consider
TS model with consequents as a linear function of the
antecedent variables. Here the rules R; take the form:
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R, = If xx is CLOSE to v{ then
yy = fiy(xe) . 7 = 1,2, q

We use fi]' = d”‘o + dijl--'fkl + ... +
dijpTip, ] = 1, 2, ..., q;
ijt;i = 1y 23 (] C,] = ]y 21 thy q:t = 0’ 1; -y P

are constants to be identified.

In order to implement the rule base we need to
define the membership function for “z; CLOSE to
v;;”. Here we use more general asymmetric trian-
gular functions having peak, a;; = v, and widths
b{}, b{; (here L. and R indicate the left and right widths
of the triangle). Note that aj;’s, b{;’s and b{;’s for all
q rules corresponding to a particular cluster i are the
same. For the j-th feature, to find bf] and bf; we pro-
ceed as follows. We sort vy, @ = 1, 2, ..., c. Let
the sorted list be v}, I = 1, 2, ..., ¢. Sup-
pose vy takes the m-th position in the sorted list, i.e.,
'Uiz;,.j = ’U%, then the width of the fuzzy set asso-
ciated to v, (i.e., the m-th fuzzy set on the axis for

j-th feature) is

L . B -
bmv 7 {’Ulm] - U'im—lj}’ m = 2, ey C 1
R . z z . _
b’”» ] - {Uim+1j - Uimj}a m = 2, ceey C 1

blL, i = {'L’ij —(L; — (0.05 % (H; — L))}

R _ z oy Z
by = {v — Y

12]
b = {vl, — v} ;}
bl 5 = {(H; + (0.05 % (H; — L;))) = vi;}.

We have obtained the least square error (L.SE) es-
timate of the consequent parameters assuming fixed
values for the antecedent parameters. We take this
as an initial choice for the consequent. We can now
use the gradient descent method to further refine all
parameters (memberships and centers). Further tun-
ing of consequents along with membership parame-
ters is justified because when membership parameters
are altered the LSE estimate of the consequents may
(usually will) not remain optimal. In this report, we
don’t consider this tuning because we got excellent
results even without this.

4. Results

To demonstrate the effectiveness of the proposed
scheme we implemented Sammon’s algorithm also.
All algorithms are tested on three data sets named
Iris, Sphere-Shell, and Elongated-Clusters. Iris
is a well-known data set consisting 150 points from
three classes in a 4-dimensional space. Each class
has 50 points. One of the classes is well separated
from the rest while the other two have some overlap.

Sphere-Shell is a synthetic data set consisting of 1000
points in 3-dimension. 500 points are selected ran-
domly within a hemi-sphere of radius rl1 and rest 500
in a shell defined by two hemi-spheres of radius r2
and r3, rl < r2 < r3 . Elongated-Cluster [4] is also
a synthetic data set consisting of 2 elongated clusters
of 500 points each in 3-space.

We used the following parameter values for the
results reported.

Sammon_Projection : For all data sets - Error
bound =0.0001, Epochs = 200 and Learning rate =
0.4.

For Scheme-1 : For Iris and Sphere-Shell - Learning
rate for width = 0.1, Learning rate for center = 0.1,
Learning rate for consequent = 0.45, Epochs = 1000
and Rules = 10. For Elongated-Cluster - Learning
rate for width = 0.075, Learning rate for center =
0.0.075, Learning rate for consequent = 0.25, Epochs
= 2000 and Rules = 10.

For Scheme-2 : For all data sets 10 rules are used.
For Tris we used 75 data points for extraction of the
rules, while for Elongated-Clusters and Sphere-Shell
only 25% (i.e., 250) points are used for rule extrac-
tion. Of course, the entire data set is then projected
using the extracted rules.

Table 1 shows the CPU time needed by different
methods for the three data sets. For small data sets
like Iris Sammon’s method require computation time
comparable to the proposed schemes. The quality of
the outputs both visually and in terms of Sammon’s
error computed for the entire data set after projection
(Table 2) are quite comparable. Figures 1-5 depict
the 2-D scatterplots of the projected points by Sam-
mon’s method and the proposed schemes. Note that
for Sammon’s method we use the entire data set.

Table 1: CPU Time (Secs) For Various Methods

Data SM Scheme-1 | Scheme-2
IRIS 145 183 82
Elongated

Clusters 13414 | 1382 838
Sphere

Shell 13419 | 1108 838

Table 2: Sammon’s Error For Various Methods

Data SM Scheme-1 | Scheme-2
IRIS 0.006341 | 0.015662 0.033050
Elongated

Clusters 0.000710 | 0.023999 0.000758
Sphere

Shell 0.05213 0.034104 0.032565

For the FElongated-Clusters proposed Scheme-1
and Scheme -2 reduce the CPU time by about 90%
and 94% respectively. Even for such a complex data
structure the performance of the proposed schemes
and Sammon's method are quite similar in terms of
Sammon’s error function (Table 1). Visually also they
are quite comparable (Figs. 1-5).
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Finally, for the Sphere-Shell also a significant im-
provement (about 90%) in computation time is ex-
hibited by the proposed methods over Sammon’s al-
gorithm.

5. Conclusions

We have proposed a new fuzzy rule based scheme
for structure preserving dimensionality reduction
(feature extraction). It is based on statistical the-
ory of subsampling and universal approximation ca-
pability of rule-based fuzzy systems. We used ex-
ploratory data analysis for extraction of the initial
rule set which is then further tuned using gradient
descent. We tested the proposed schemes on several
data sets and obtained excellent results. Our method
achieved three things : (i) Unlike Sammon’s method
it has good predictability. (ii) Computationally it
is also much more efficient than original Sammon’s
method. (iii) It is more eflicient (both in terms of
computation time and predictability) than some of
the NN implementations of Sammon’s method (We
have not included results for NN methods due to lack
of space). In near future we would like to investigate
performance of the proposed scheme with the MA
model also.
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Figure 1: Iris - Sammon’s Projection
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