The Future Video Coding (FVC) is a new state of the art video compression standard that is going to standardize, as the next generation of High Efficiency Video Coding (HEVC) standard. The FVC standard applies newly designed block structure, which is called quadtree plus binary tree (QTBT) to improve the coding efficiency. Also, intra and inter prediction parts were changed to improve the coding performance when comparing to the previous coding standard such as HEVC and H.264/AVC. Experimental results shows that we are able to achieve the average BD-rate reduction of 25.46%, 38.00% and 35.78% for Y, U and V, respectively. In terms of complexity, the FVC takes about 14 times longer than the consumed time of HEVC encoder.
By IPCC climate change scenario, the socioeconomic actions such as the land use change are closely associated with the climate change as an up zoning action of urban development to increase green gas emission to atmosphere. Prediction of the land use change with rational quality can provide better data for understanding of the climate change in future. This study aims to predict land use change of Cheongju in future and SLEUTH model is used to anticipate with the status quo condition, in which the pattern of land use change in future follows the chronical tendency of land use change during last 25 years. From 40 years prediction since 2000 year, the area urbanized compared with 2000 year increases up to 87.8% in 2040 year. The ratios of the area urbanized from agricultural area and natural area in 2040 are decreased to 53.1% and 15.3%, respectively.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.4
/
pp.633-636
/
2022
The reduction of energy consumption at the base station (BS) has become more important recently. In this paper, we consider the adaptive muting of the antennas based on the predicted future traffic load to reduce the energy consumption where the number of active antennas is adaptively adjusted according to the predicted future traffic load. Given that traffic load is sequential data, three different RNN structures, namely long-short term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) are considered for the future traffic load prediction. Through the performance evaluation based on the actual traffic load collected from the Afghanistan telecom company, we confirm that the traffic load can be estimated accurately and the overall power consumption can also be reduced significantly using the antenna musing.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.135-135
/
2021
In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.
The method of predicting the future may be predicted by technical characteristics or technical performance. Therefore, technology prediction is used in the field of strategic research that can produce economic and social benefits. In this study, we predicted the future market through the study of how to predict the future with these technical characteristics. The future prediction method was studied through the prediction of the time when the market occupied according to the demand of special product. For forecasting market demand, we proposed the future forecasting model through comparison of representative quantitative analysis methods such as CAGR model, BASS model, Logistic model and Gompertz Growth Curve. This study combines Rogers' theory of innovation diffusion to predict when products will spread to the market. As a result of the research, we developed a methodology to predict when a particular product will mature in the future market through the spread of various factors for the special product to occupy the market. However, there are limitations in reducing errors in expert judgment to predict the market.
The future water quality of Youngwol Dam was predicted using FEMWASP. In the this study, point and non-point source in the basin was investigated in detail, and future pollutant loading was computed by various prediction technique. The water quality of 29 sites was analyzed over four seasons. FEMWASP was used to predict future water quality of Youngwol lake and downstream of proposed dam. Future water quality of Youngwol lake was predicted to configure eutrophication status, management criteria was suggested to minimize the pollution problems coming from future eutrophication. Discharge rate of dam was decided as 30CMS to conserve the water quality, and overall design of dam was changed.
The accurate prediction of future mortality is an important issue due to recent rapid increases in life expectancy. An accurate estimation and prediction of mortality is important to future welfare policies. The optimal selection of a mortality model is important to estimate and predict mortality; however, the period of time series data used is also an important issue. It is essential to understand that the time series data for mortality is short in Korea and the data before 1982 is incomplete. This paper divides the time series of Korean mortality into two sets to compare the parameter estimates of the LC model and LC model with a cohort effect by the period of data used. A modeling and prediction of the mortality index and cohort effect index as well as the evaluation of future life expectancy is conducted. Finally, some suggestions are proposed for the future prediction of mortality.
Kwak, Ho-Chan;Song, Ji Young;Lee, In Mook;Lee, Jun
Journal of the Korean Society of Safety
/
v.33
no.4
/
pp.98-104
/
2018
Macroscopic accident analyses have been conducted to incorporate transportation safety into long-term transportation planning. In macro-level accident prediction model, exposure variable(e.g. a settled population) have been used as fundamental explanatory variable under the concept that each trip will be subjected to a probable risk of accident. However, a settled population may be embedded error by exclusion of active population concept. The objective of this research study is to develop macro-level accident prediction model using floating population variable(concept of including a settled population and active population) collected from mobile phone data. The concept of accident prediction models is introduced utilizing exposure variable as explanatory variable in a generalized linear regression with assumption of a negative binomial error structure. The goodness of fit of model using floating population variable is compared with that of the each models using population and the number of household variables. Also, log transformation models are additionally developed to improve the goodness of fit. The results show that the log transformation model using floating population variable is useful for capturing the relationships between accident and exposure variable and generally perform better than the models using other existing exposure variables. The developed model using floating population variable can be used to guide transportation safety policy decision makers to allocate resources more efficiently for the regions(or zones) with higher risk and improve urban transportation safety in transportation planning step.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.23
no.9
/
pp.587-594
/
2011
This paper describes the investigation on current state of cold storage facilities, and analysis on the demand prediction in the near future. And based on the analysis results, we prospect the scale of cold storage facilities in the near future. The main analysis results are summarized by the followings ; The present circumstances of cold storage facility are determined by investigating actual loading capacity, average stock amounts, and return number of cold storage facility. From the results, the present situation for cold storage facility is about 3% over. It is found that the average stock amounts increase gradually, and accordingly that the demand of cold storage facility is predicted to be increased, resulting that the capacity of cold storage facilities in 2013 expects to reach up to 5,250,000 ton. It is considered that the results of demand prediction has significant implications on the management of cold storage facility in the near future.
Reliability plays a pivotal role in products safety and quality. DoD RIAC recently developed a new reliability prediction methodology, $217Plus^{TM}$, for electronic systems. It officially replaces the well-known MIL-HDBK-217 and is expected to be widely used. Although theoretic study about $217Plus^{TM}$ and its application towards field systems seem to be attractive, it is also desirable to understand the general background of its development. In this paper, we performed a historical review of the arenas related to reliability prediction. Due to the vast of materials, our scope was limited to the development of $217Plus^{TM}$. We first reviewed Rome Laboratory and RIAC. We then explained the development course of reliability methods, MIL-HDBK-217, PRISM, and 217-Plus. This review will form not only a good understanding of the methodology but a basis for future study. We conclude this study with provision of future research areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.