• Title/Summary/Keyword: future forecast

Search Result 589, Processing Time 0.026 seconds

A Study on forecasting the long-run path of the Korean bioindustry based on the experiences of the U.S. BT and the Korean ICT industries (미국 BT와 한국 ICT 산업 연구를 통한 한국 바이오산업 장기전망에 관한 연구)

  • Moon, Sunung;Kim, Minseong;Jeon, Yongil
    • International Area Studies Review
    • /
    • v.13 no.3
    • /
    • pp.331-359
    • /
    • 2009
  • We forecast the performance of the Korean biotechnology industry by adopting similar development paths taken by the U.S. biotechnology and Korean ICT industries. Our long-term forecasting techniques predict that Korean BT market size will increase from 3.7 billion to 10.8 billion U.S. dollars by year 2030. The pharmaceutical industry, one of major bio-subindustries, is expected to dominate Korean BT market in the long-run. Also, the relative portion of the exports in the Korean BT industry will be larger and thus the export-oriented government policy is required for the long-run growth of the Korean BT industry. Since the Korean ICT industry has already slowed down in the development, Korean BT industry is likely to catch up with ICT industry in the near future.

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

Study on Anomaly Detection Method of Improper Foods using Import Food Big data (수입식품 빅데이터를 이용한 부적합식품 탐지 시스템에 관한 연구)

  • Cho, Sanggoo;Choi, Gyunghyun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.19-33
    • /
    • 2018
  • Owing to the increase of FTA, food trade, and versatile preferences of consumers, food import has increased at tremendous rate every year. While the inspection check of imported food accounts for about 20% of the total food import, the budget and manpower necessary for the government's import inspection control is reaching its limit. The sudden import food accidents can cause enormous social and economic losses. Therefore, predictive system to forecast the compliance of food import with its preemptive measures will greatly improve the efficiency and effectiveness of import safety control management. There has already been a huge data accumulated from the past. The processed foods account for 75% of the total food import in the import food sector. The analysis of big data and the application of analytical techniques are also used to extract meaningful information from a large amount of data. Unfortunately, not many studies have been done regarding analyzing the import food and its implication with understanding the big data of food import. In this context, this study applied a variety of classification algorithms in the field of machine learning and suggested a data preprocessing method through the generation of new derivative variables to improve the accuracy of the model. In addition, the present study compared the performance of the predictive classification algorithms with the general base classifier. The Gaussian Naïve Bayes prediction model among various base classifiers showed the best performance to detect and predict the nonconformity of imported food. In the future, it is expected that the application of the abnormality detection model using the Gaussian Naïve Bayes. The predictive model will reduce the burdens of the inspection of import food and increase the non-conformity rate, which will have a great effect on the efficiency of the food import safety control and the speed of import customs clearance.

Improvement of Methodology for Appraising Tram Projects Considering the Effect of Buses (노선버스 영향을 고려한 트램사업 투자평가방법론 개선 연구)

  • Choi, Ji Ho;Chung, Sung Bong;Bae, Tae Hee;Myung, Myo Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • In contrast to standard train tracks, tramlines are often set along public roads, with trams running among pedestrians and other vehicles. In some cities and towns, trams and buses share the same routes and stations. Under the current investment appraisal system, trams are classified into light rail when predicting traffic demand and calculating benefits, but in the case of non-capital areas, it is notable that the origin-destination and transit lines of buses are not provided in the Korea Transport Database distribution data. Due to this problem, it is difficult to reflect proper mode changing behaviors between route buses and trams. This study examines the impact on tramlines of bus routes that are not currently considered in non-capital areas. Following an analysis of the effect of tram projects according to whether bus routes are considered or not, an improvement in methodology is proposed. Through this study, it is expected that the investment appraisal system for the planning of new tramlines will be improved in the future.

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.

A Study on Forecasting Industrial Land Considering Leading Economic Variable Using ARIMA-X (선행경제변수를 고려한 산업용지 수요예측 방법 연구)

  • Byun, Tae-Geun;Jang, Cheol-Soon;Kim, Seok-Yun;Choi, Sung-Hwan;Lee, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.214-223
    • /
    • 2022
  • The purpose of this study is to present a new industrial land demand prediction method that can consider external economic factors. The analysis model used ARIMA-X, which can consider exogenous variables. Exogenous variables are composed of macroeconomic variable, Business Survey Index, and Composite Economic Index variables to reflect the economic and industrial structure. And, among the exogenous variables, only variables that precede the supply of industrial land are used for prediction. Variables with precedence in the supply of industrial land were found to be import, private and government consumption expenditure, total capital formation, economic sentiment index, producer's shipment index, machinery for domestic demand and composite leading index. As a result of estimating the ARIMA-X model using these variables, the ARIMA-X(1,1,0) model including only the import was found to be statistically significant. The industrial land demand forecast predicted the industrial land from 2021 to 2030 by reflecting the scenario of change in import. As a result, the future demand for industrial land was predicted to increase by 1.91% annually to 1,030.79 km2. As a result of comparing these results with the existing exponential smoothing method, the results of this study were found to be more suitable than the existing models. It is expected to b available as a new industrial land forecasting model.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

Forecasting the Changes in Construction Market by Analyzing General·Specialty Contractors' Perception on Business Area Abolition (종합·전문건설사업자의 상호시장진출 의향 및 참여방식 분석을 통한 종합·전문간 업역철폐에 따른 건설시장 변화 예측)

  • Kim, Sung-Il;Chang, Chul-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.88-97
    • /
    • 2023
  • The purpose of this study is to forecast future changes in the construction market following the reorganization of the construction production system by analyzing the possible market size in which general contractors and specialty contractors may participate in each other, and by carrying out a survey. The ratio of correlation between general construction and specialty construction industries was derived by analyzing the relevance of work area of general contractors and specialty contractors, the similarity of registration standards, and the market in which general contractors and specialty contractors may be able to mutually participate. In order to overcome the limitation of previous studies which analyze the changes in construction market based on the statistical data, and to analyze in more detail the impact of reorganization of construction production system from market participants' view, a survey targeting general contractors and specialty contractors for their willingness and method of participating in the mutual market was conducted. As a result of the survey, it was found that 52% of general contractors were willing to participate in the specialized construction market and 55.1% of specialty contractors were willing to participate in the general construction market. It was found that there was a high willingness to participate in the earthworks, reinforced concrete works, facility maintenance and management, water and sewage facility works, and interior works, and high competition is expected for projects with a scale of 500 million to less than 3 billion won. Through this study, it will be possible for general and specialty contractors to understand the changes in the construction market due to the reorganization of the construction industry production system, and to respond effectively to these changes.

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

Flood Runoff Simulation Using GIS-Grid Based K-DRUM for Yongdam-Dam Watershed (GIS격자기반 K-DRUM을 활용한 용담댐유역 홍수유출모의)

  • Park, Jin Hyeog;Hur, Young Teck;Ryoo, Kyong Sik;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.145-151
    • /
    • 2009
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. K-DRUM (K-water hydrologic & hydaulic Distributed flood RUnoff Model) which was developed to calculate flood discharge connected to radar rainfall based on long-term runoff model developed by Kyoto- University DPRI (Disaster Prevention Research Institute), and Yondam-Dam watershed ($930km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model (K-DRUM). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.