Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System |
Yoo, Hyung Ju
(Dept. of Civil Engineering, Hongik University)
Lee, Seung Oh (Dept. of Civil Engineering, Hongik University) Choi, Seo Hye (Korea Institute of Civil Engineering and Building Technology) Park, Moon Hyung (Korea Institute of Civil Engineering and Building Technology) |
1 | Choi, S. H., Kwon, H. H., and Park, M. (2019). Prediction on the Amount of River Water use using Support Vector Machine with Time Series Decomposition. Journal of Korea Water Resources Association. 52(12): 1075-1086. DOI |
2 | Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J. (2016). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems. 28(10): 2222-2232. DOI |
3 | Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems. 6(02): 107-116. DOI |
4 | Korea Meteorological Administration (KMA). (2020). Korea Climate Change Assessment Report 2020. Seoul: KMA. |
5 | Choi, S., Kang, S., Lee, D., and Kim, J. (2018). A Study on Water Supply and Demand Prospects for Water Resources Planning. Journal of the Korean Society of Hazard Mitigation. 18(7): 589-596. DOI |
6 | Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv: 1412.3555. |
7 | Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015, June). An Empirical Exploration of Recurrent Network Architectures. In International Conference on Machine Learning (pp. 2342-2350). |
8 | Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (RELU). arXiv preprint arXiv:1803.08375. |
9 | Chen, W. B., Liu, W. C., and Hsu, M. H. (2012). Comparison of ANN Approach with 2D and 3D Hydrodynamic Models for Simulating Estuary Water Stage. Advances in Engineering Software. 45(1): 69-79. DOI |
10 | Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-decoder for Statistical Machine Translation. arXiv Preprint arXiv: 1406.1078. |
11 | Yeo, W. K., Seo, Y. M., Lee, S. Y., and Jee, H. K. (2010). Study on Water Stage Prediction using Hybrid Model of Artificial Neural Network and Genetic Algorithm. Journal of Korea Water Resources Association. 43(8): 721-731. DOI |
12 | Lee, J. Y., Kim, H. I., and Han, K. Y. (2020). Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood. Journal of The Korean Society of Civil Engineers. 40(3): 303-314. DOI |
13 | Oh, J. H., Ryu, K. S., Bok, J. S., Jang, Y. S., Bae, Y. D., and Lee, B. G. (2019). Water Supply-and-Demand Analysis Considering the Actual Water-Use System in the East Basin of Han River. Journal of the Korean Society of Hazard Mitigation. 19(7): 529-543. DOI |
14 | Ruxton, G. D. (2006). The Unequal Variance t-test is an Underused Alternative to Student's t-test and the Mann-Whitney U test. Behavioral Ecology. 17(4): 688-690. DOI |
15 | Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based Model for Predicting Water Table Depth in Agricultural Areas. Journal of Hydrology. 561: 918-929. DOI |
16 | Olah, C. (2018). Understanding Lstm Networks, August 2015. URL https://colah.github.io/posts/2015-08-Understanding-LSTMs. |
17 | Lee, G., Jung, S., and Lee, D. (2018). Comparison of Physics-based and Data-driven Models for Streamflow Simulation of the Mekong River. Journal of Korea Water Resources Association. 51(6): 503-514. DOI |
18 | Lee, S. W., Kim, Y. O., and Lee, D. R. (2005). Quantifying Uncertainty for the Water Balance Analysis. Journal of Korea Water Resources Association. 38(4): 281-292. DOI |
19 | Ministry of Land Infrastructure and Transport (MOLIT). (2016). National Water Resources Plan (2011~2020) (3rd revision). Sejong: MOLIT. |
20 | Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the Exploding Gradient Problem. CoRR, abs/1211.5063, 2, 417. |
21 | Tran, Q. K. and Song, S. K. (2017). Water Level Forecasting based on Deep Learning: A use Case of Trinity River-Texas-The United States. Journal of KIISE. 44(6): 607-612. DOI |
22 | Vapnik, V., Guyon, I., and Hastie, T. (1995). Support Vector Machines. Mach. Learn. 20(3): 273-297. DOI |
23 | Yoo, H. J., Kim, D. H., Kwon, H. H., and Lee, S. O. (2020). Data Driven Water Surface Elevation Forecasting Model with Hybrid Activation Function-A Case Study for Hangang River, South Korea. Applied Sciences. 10(4): 1424. DOI |
24 | Yoo, H. J., Lee, S. O., Choi, S., and Park, M. (2019). A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge. Journal of Korean Society of Disaster and Security. 12(2): 73-82. DOI |
25 | Zhang, D., Lindholm, G., and Ratnaweera, H. (2018). Use Long Short-term Memory to Enhance Internet of Things for Combined Sewer Overflow Monitoring. Journal of Hydrology. 556: 409-418. DOI |