DOI QR코드

DOI QR Code

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area

엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법

  • Lee, Seonmi (Department of Civil Engineering, Ajou University) ;
  • Choi, Youngje (Department of Civil Engineering, Ajou University) ;
  • Lee, Eunkyung (Department of Civil Engineering, Ajou University) ;
  • Ji, Jungwon (Department of Civil Engineering, Ajou University) ;
  • Yi, Jaeeung (Department of Civil Engineering, Ajou University)
  • 이선미 (아주대학교 건설시스템공학) ;
  • 최영제 (아주대학교 건설시스템공학) ;
  • 이은경 (아주대학교 건설시스템공학) ;
  • 지정원 (아주대학교 건설시스템공학) ;
  • 이재응 (아주대학교 건설시스템공학)
  • Received : 2021.12.28
  • Accepted : 2022.03.18
  • Published : 2022.04.30

Abstract

Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

최근 국내에서는 집중호우로 인해 홍수피해가 자주 발생하고 있으며 피해규모가 증가하고 있다. 특히 도시지역은 인구와 재산이 밀집되어 있어 홍수에 매우 취약한 지역이며, 매년 하수관거 설계빈도 이상의 강우 발생 등으로 인해 내수침수 피해가 발생하고 있다. 각 지자체에서는 홍수피해 저감을 위해 기상청에서 전국적으로 동일한 강우기준에 따라 발령하는 호우특보를 통해 홍수피해 대비 및 대응을 실시하고 있다. 하지만 서울특별시는 25개 자치구가 밀집되어 있지만 자치구별로 기후, 지형, 방재 등 지역특성 및 홍수피해 특성이 상이한 실정이다. 이에 따라 본 연구에서는 서울특별시 25개 자치구를 대상으로 지역특성을 고려한 엔트로피 가중치 및 유클리드 거리를 활용하여 자치구별 홍수취약도를 산정하고, 확률강우량 및 과거 홍수피해 강우량을 기반으로 강우기준을 산정하였다. 그 결과 자치구별 2단계 강우기준은 기상청의 호우주의보 기준, 4단계 강우기준은 호우특보 기준과 크게 차이가 나지 않는 것으로 분석되었다. 또한 기후노출이 높고 적응도가 낮은 서울 북부지역이 상대적으로 홍수취약도가 높아 강우기준이 낮게 산정되었다. 이에 따라 서울 북부지역은 상대적으로 낮은 강우기준에 따라 선제적으로 홍수대응이 가능할 것으로 판단된다. 향후 지역특성 및 피해특성을 고려하여 산정된 자치구별 강우기준을 활용하여 기상예측자료의 적용성을 검토하고, 선제적인 홍수대응방안 마련을 위한 연구를 수행할 예정이다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 물관리연구사업의 지원을 받아 연구되었습니다(127569).

References

  1. Choi, C.K., and Kim, K.T. (2020). "A study on the development of rainfall risk information considering local characteristics." Journal of Korean Society of Hazard Mitigation, Vol. 20, No. 3, pp. 237-245. https://doi.org/10.9798/kosham.2020.20.3.237
  2. Choi, Y.J., and Yi, J.E. (2019). "Research on flood risk forecast method using weather ensemble prediction system in urban region." Journal of Korea Water Resource Association, Vol. 52, No. 10, pp. 753-761. https://doi.org/10.3741/JKWRA.2019.52.10.753
  3. Dapeng, H., Renge, Z., Zhiguo, H., and Fei, M. (2012). "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method." Journal of Natural Hazard, Vol. 64, pp. 1575-1586. https://doi.org/10.1007/s11069-012-0323-1
  4. Hiren, D., and James, M.E. (2017). "Characteristics of intense rainfall over GujaratState (India) based on percentile classification." Hydrological Sciences Journal, Vol. 62, No. 12, pp. 2035-2048. https://doi.org/10.1080/02626667.2017.1357818
  5. Hwang, N.H., Park, H.S., and Chung, G.H. (2019). "Flood vulnerability analysis in Seoul, Korea." Journal of Korea Water Resource Association, Vol. 52, No. 10, pp. 729-742. https://doi.org/10.3741/JKWRA.2019.52.10.729
  6. Intergovernmental Panel on Climate Change (IPCC) (2001). Climate change 2001: Impacts, adaptation, and vulnerability. Cambridge University Press. Cambridge, UK.
  7. Kim, Y.H., Choi, D.Y., Chang, D.E., Yoo, H.D., and Jin, G.B. (2011). "An improvement on the classification of special weather report for heavy rain considering the possibility of rainfall damage and the recent meteorological characteristics." Journal of Atmosphere, Vol. 21, No. 4, pp. 481-495.
  8. Kim, Y.K., Chung, E.S., and Lee, K.S. (2012). "Fuzzy TOPSIS approach to flood vulnerability assessment in Korea." Journal of Korea Water Resource Association, Vol. 45, No. 9, pp. 901-913. https://doi.org/10.3741/JKWRA.2012.45.9.901
  9. Kim, Y.T., Park, M.H., and Kwon, H.H. (2020). "Spatio-temporal summer rainfall pattern in 2020 from a rainfall frequency perspective." Journal of Korea Society of Disaster & Security, Vol. 13, No. 4, pp. 93-104. https://doi.org/10.21729/KSDS.2020.13.4.93
  10. Lee, S.H., Kang, J.E., Bae, H.J., and Yoon, D.K. (2015). "Vulnerability assessment of the air pollution using entropy weights: Focused on Ozone." Journal of The Korean Association of Regional Geographers, Vol. 21, No. 4, pp. 751-763.
  11. Ministry of Environment (ME) (2018). 2018 Flood damage situation.
  12. Organization for Economic Cooperation and Development (OECD). (1991). Environmental indicators. A preliminary set. Paris, France.
  13. Ouma, Y.O., and Tateishi, R. (2014). "Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment." Water, Vol. 6, No. 6, pp. 1515-1545. https://doi.org/10.3390/w6061515
  14. Shannon, C.E. (1948). "A mathematical theory of communication." The Bell System echnical Journal, Vol. 27, No. 3, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  15. Shim, J.H., and Choi, S.Y. (2012). "Analysis of urban flood damage and strategies of Flood Response Strategies in future cities." Magazine of Korea Water Resources Association, Vol. 45, No. 7, pp. 16-22.
  16. Shin, H.J., Choi, Y.J., and Yi, J.E. (2019). "Analysis of the local characteristics of flood damage vulnerability in an urban area: The Han River basin." Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 293-303. https://doi.org/10.9798/kosham.2019.19.5.293
  17. Song, J.H., Kim, S.D., Park, M.J., and Choi, H.I. (2013). "Estimation of flood risk index for the Nakdong River watershed." Journal of Korea Water Resource Association. Vol. 46, No. 1, pp. 35-45. https://doi.org/10.3741/JKWRA.2013.46.1.35