• Title/Summary/Keyword: fusing science

Search Result 90, Processing Time 0.022 seconds

Enhanced Extraction of Traversable Region by Combining Scene Clustering with 3D World Modeling based on CCD/IR Image (CCD/IR 영상 기반의 3D 월드모델링과 클러스터링의 통합을 통한 주행영역 추출 성능 개선)

  • Kim, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2008
  • Accurate extraction of traversable region is a critical issue for autonomous navigation of unmanned ground vehicle(UGV). This paper introduces enhanced extraction of traversable region by combining scene clustering with 3D world modeling using CCD(Charge-Coupled Device)/IR(Infra Red) image. Scene clustering is developed with K-means algorithm based on CCD and IR image. 3D world modeling is developed by fusing CCD and IR stereo image. Enhanced extraction of traversable regions is obtained by combining feature of extraction with a clustering method and a geometric characteristic of terrain derived by 3D world modeling.

A Study of Position Estimation Considering Wheel Slip of Mecanum Wheeled Mobile Robot (메카넘 휠 이동로봇의 바퀴 슬립을 고려한 위치 추정 연구)

  • Oh, Injin;Kwon, Gunwoo;Yang, Hyunseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.401-407
    • /
    • 2019
  • In this paper, the position estimation considering wheel slip of mecanum wheeled mobile robots is discussed. Since the mecanum wheeled mobile robot does not need a space to rotate, it is very suitable in narrow industrial fields. However, the slip caused by the roller attached to the wheel makes it difficult to estimate the position precisely. Due to these limitations, mecanum wheels are rarely applied to unmanned mobile robots in automation factories. In this paper, a method to compensate the orientation and distance error caused by the slip is proposed. The exact orientation is measured by fusing gyro and magnetometer sensor data with application of Kalman filter. In addition, the kinematic model accounting slip effects will be defined to compensate the distance error.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

MOSAICFUSION: MERGING MODALITIES WITH PARTIAL DIFFERENTIAL EQUATION AND DISCRETE COSINE TRANSFORMATION

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.389-406
    • /
    • 2023
  • In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

Display of Bacillus macerans Cyclodextrin Glucanotransferase on Cell Surface of Saccharomyces cerevisiae

  • Kim, Kyu-Yong;Kim, Myoun-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.411-416
    • /
    • 2002
  • Bacillus macerans cyclodextrin glucanotransferase (CGTase) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein, Aga1p. The surface display of CGTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form ${\alpha}$-cyclodextrin from starch. The maximum surface-display of CGTase was obtained by growing recombinant S. cerevisiae at $20^{\circ}C$ and pH 6.0. S. cerevisiae cells displaying CGTase on their surface consumed glucose and maltose, inhibitory byproducts of the CGTase reaction, to enhance the purity of produced cyclodextrins. Accordingly, the experimental results described herein suggest a possibility of using the recombinant S.cerevisiae anchored with bacterial CGTase on the cell surface as a whole-cell biocatalyst for the production of cyclodextrin.

Expression of the cyan fluorescent protein in fibroin H-chain of transgenic silkworm

  • Goo, Tae-Won;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung Won;Kim, Seong-Wan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • We constructed the fibroin H-chain expression system to produce enhanced cyan fluorescent proteins (ECFP) in transgenic silkworm cocoon. Fluorescent cocoon could be made by fusing ECFP cDNA to the heavy chain gene and injecting it into a silkworm. The ECFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the ECFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworms. The EGFP fluorescence became visible in the ocelli and in the central and peripheral nervous system on the seventh day of embryonic development. A mixture of the donor and helper vector was micro-injected into 1,020 Kumokjam, bivoltin silkworm eggs. We obtained 6 broods. The cocoon was displayed strong blue fluorescence, proving that the fusion protein was present in the cocoon. Accordingly, we suggest that the ECFP fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.

Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator

  • Kim, Kiyoung;Choi, Jaemook;Koo, Gunhee;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.647-667
    • /
    • 2016
  • In this paper, dynamic displacement is estimated with high accuracy by blending high-sampling rate acceleration data with low-sampling rate displacement measurement using a two-stage Kalman estimator. In Stage 1, the two-stage Kalman estimator first approximates dynamic displacement. Then, the estimator in Stage 2 estimates a bias with high accuracy and refines the displacement estimate from Stage 1. In the previous Kalman filter based displacement techniques, the estimation accuracy can deteriorate due to (1) the discontinuities produced when the estimate is adjusted by displacement measurement and (2) slow convergence at the beginning of estimation. To resolve these drawbacks, the previous techniques adopt smoothing techniques, which involve additional future measurements in the estimation. However, the smoothing techniques require more computational time and resources and hamper real-time estimation. The proposed technique addresses the drawbacks of the previous techniques without smoothing. The performance of the proposed technique is verified under various dynamic loading, sampling rate and noise level conditions via a series of numerical simulations and experiments. Its performance is also compared with those of the existing Kalman filter based techniques.

Real-Time Visible-Infrared Image Fusion using Multi-Guided Filter

  • Jeong, Woojin;Han, Bok Gyu;Yang, Hyeon Seok;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3092-3107
    • /
    • 2019
  • Visible-infrared image fusion is a process of synthesizing an infrared image and a visible image into a fused image. This process synthesizes the complementary advantages of both images. The infrared image is able to capture a target object in dark or foggy environments. However, the utility of the infrared image is hindered by the blurry appearance of objects. On the other hand, the visible image clearly shows an object under normal lighting conditions, but it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and a real-time image fusion method. The proposed multi-guided filter is a modification of the guided filter for multiple guidance images. Using this filter, we propose a real-time image fusion method. The speed of the proposed fusion method is much faster than that of conventional image fusion methods. In an experiment, we compare the proposed method and the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. The proposed method synthesizes 57.93 frames per second for an image size of $320{\times}270$. Based on our experiments, we confirmed that the proposed method is able to perform real-time processing. In addition, the proposed method synthesizes flicker-free video.

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.