• Title/Summary/Keyword: furnace design

Search Result 346, Processing Time 0.028 seconds

Comparative Evaluation of Thermal Design Parameters of Different Sizes of Circulating Fluidized Bed Boiler (규모별 순환유동상 보일러의 열설계 변수 비교 평가)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2011
  • The present paper discusses thermal design parameters of different sizes of circulating fluidized bed (CFB) boilers with capacities ranging from 2 MWe pilot scale boiler to a 600 MWe utility boiler. Physical boiler size and shape of furnace were identified and dimensional data have been summarized. By performing thermal design for each of the boilers, heat transfer surface area, furnace shape and size, and allocation of heat transfer surface for water-steam side heat absorption have been recalculated, and presented. Although boilers may have significantly different capacity, the facilities have common design parameters, when they are evaluated as basic thermal design processes. The significance of thermal design procedure is explicitly discussed.

Heat Transfer Characteristics of 0.5 t/h Class Non-Furnace Boiler with a Metal Fiber Burner (금속섬유 버너를 채택한 0.5 t/h 급 무연소실 보일러의 열전달 특성)

  • Ahn, Joon;Kim, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.215-220
    • /
    • 2011
  • A 0.5 t/h class non-furnace boiler has been developed with the aim of achieving a high efficiency and compactness. A metal fiber burner has been adopted so that a stable flame can be obtained. The tube banks are installed downstream of the burner. Bare tubes are used upstream, while finned tubes are installed downstream. The heat-transfer characteristics of the non-furnace boiler have been studies on the basis of the results of the numerical simulation as well as those of the experiment. Important design parameters such as the bulk temperature along the streamwise direction and the temperature of the fin tips have been evaluated using the CFD results and compared with the experimental data and the empirical correlations typically used for the design of the boiler.

Development of A Hot Water Boiler System with A Rice Hull Furnace -Development of A Mathematical Model of Simulation- (왕겨 연소기(燃燒機)를 이용(利用)한 온수(温水)보일러 시스템 개발(開發)(II) -시뮬레이션 모형(模型) 개발(開發)-)

  • Park, S.J.;Noh, S.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 1988
  • A mathematical model was developed and programmed for computer simulation of a prototype hot water boiler system with rice hull furnace to predict the temperature distributions in the rice hull furnace and water tank, mass flow rate of hot water and thermal efficiency of the system under various operation and design conditions. The effects of feed rate of rice hull, thickness of the furnace wall, the type of heat exchanger, diameter of the water circulation pipe, etc, on the performance of the system can be evaluated with this model. The validity and simulation results of this model will be published in the next paper.

  • PDF

Thyristor Rectifier for DC Arc Furnace with Enhanced Arc Stability

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.498-499
    • /
    • 2011
  • In this paper, the fundamental features of the arc stability DC arc furnace have been investigated, from the converter point of view. To compare of measurement arc data from DC arc furnace and the advanced arc simulations of magneto-hydrodynamics (MHD) and the well known Cassie-Mayr arc model have been extensively used. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. The arc simulation predicted the arc voltage for different currents with the accuracy which satisfies engineering requirements. It has been shown that the arc current steepness at current zero determines the arc stability, and the associated peak arc resistance can be used as its quantitative measure. Based on the presented insight into the DC arc stability, a converter topology solution which realizes an optimal arc stability has been proposed. The main results presented in this paper provide a design guideline for the future DC arc furnace converter topology developments.

  • PDF

Engineering Properties of Permeable Polymer Concrete with Blast Furnace Slag and Fly Ash (고로 슬래그와 플라이 애시를 혼입한 투수성 폴리머 콘크리트의 공학적 특성(구조 및 재료 \circled2))

  • 김인수;윤준노;서대석;조일호;한영규;박종화;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.272-277
    • /
    • 2000
  • This study is performed to evaluate the engineering properties of permeable polymer concrete with blast furnace slag and fly ash. The following conclusions are drawn; 1. The highest strength is achieved by 50% filled blast furnace slag powder and fly ash permeable polymer concrete, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. 2. The ultrasonic pulse velocity is in the range of 2,022 ∼ 2,139m/s. The highest pulse velocity is showed by 50% filled blast furnace slag powder and fly ash permeable polymer concrete. 3. The water permeability is in the range of 4.612∼5.913$\ell$/$\textrm{cm}^2$/h, and it is largely dependent upon the mix design.

  • PDF

A Proposal of Architecture Based Minimized Design Process for a Precedented System and the Application Case for a Blast Furnace System (기존시스템의 개념 및 기본 설계를 위해 최소화된 아키텍처 기반 설계 프로세스 제안 및 고로 시스템 적용 사례)

  • Lee, Joong Yoon;Shelly, Salim;Choi, In Young
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.72-82
    • /
    • 2018
  • Generally speaking, because of complexity of engineering process, the systems engineering may be not easy to understand clearly and not easy to perform also. The status of systems engineering infrastructure of the some Korean industry is not matured yet, i.e., the systems engineering process, method, tool and environment is not implemented consistently within the steel making industry. These difficulties are more severe at the concept and basic design phase than the detail design phase relatively. Korean industry has lots of development project for the precedented systems and usually has matured domain knowledge for the precedented systems. Even though there is a mature domain knowledge of the precedented systems, the development project will lead to failure under the condition of engineering system is not well equipped. For the project success, it is very important to have a proper engineering execution system especially for the concept design and basic phase, which has a high abstraction and a large influence on the whole project. This paper proposes a minimized design process that can be easily applied to the concept and basic design phase of the precedented systems, instead of complex system engineering processes. This paper also proposes the application case of the minimized design process and methods for a Blast Furnace System.

The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace (고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계)

  • Cho, Nae-Soo;Han, Mu-Ho;Kwon, Woo-Hyen;Choi, Youn-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

Problem Solving about Practical Engineering Education based on Analysis on Optimized Internal Flow of LTP Furnace and Uniformity of Temperature (LTP 퍼니스의 내부 유동 및 온도 균일도 최적화를 위한 실천공학교육적 문제해결)

  • Kim, Jin-woo;Youn, Gi-man;Jo, Eunjeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.125-129
    • /
    • 2018
  • This paper is about the numerical analysis on optimized internal flow of LTP furnace and uniformity of temperature. The LTP Furnace is the device that generates heat by electricity. And performs an annealing function for annealing the silicon wafer in the pre-semiconductor manufacturing process. Especially, the maximum temperature inside the chamber is maintained at a high temperature of about $400^{\circ}C$ to strengthen the wafer. When the process is completed at high temperature, the operation is repeated to reduce the temperature through the heat exchanger and carry it out. From this analysis, the ultimate goal is to derive the optimum design of the insulation volume supply/exhaust structure of the chamber through the flow analysis of the LTPS furnace. And to find cases for curriculum development.

The Impact of Side Reactions in Sulfur Recovery Unit Design (황 회수 공정 설계에서 부 반응의 영향)

  • Kim, Sung Ho;Jung, Won Seok;Lee, Hee Mun;Chang, Geun Soo
    • Plant Journal
    • /
    • v.13 no.3
    • /
    • pp.36-46
    • /
    • 2017
  • In the reaction furnace of modified Claus process, chemical equilibrium reactions and kinetic reactions occur simultaneously. The main kinetic components are hydrogen ($H_2$), carbon monoxide (CO), carbonyl sulphide (COS) and carbon disulphide ($CS_2$). The equilibrium calculations, empirical correlations and sulfur recovery technology providers' (licensors) data for kinetic components (COS and $CS_2$) in the reaction furnace were analyzed to evaluate the amount of kinetic components by applying them to five different projects in which GS Engineering & Construction participated. Kinetic components ($H_2$ and CO) are also calculated and the results are analyzed to evaluate the impact of temperature in the reaction furnace and the waste heat boiler. Total required $O_2$ deviations for combustion in the reaction furnace are additionally shown, with and without side reactions. A full understanding of side reactions in the modified Claus process can help to improve sulfur recovery efficiency and optimize equipment design.

  • PDF