• 제목/요약/키워드: fungi growth inhibition

검색결과 196건 처리시간 0.023초

친환경 유기 농자재의 고추 탄저병(Colletotrichum acutatum) 병원균의 생장 억제 효과 (Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro)

  • 곽영기;김일섭;조명철;이성찬;김수
    • 생물환경조절학회지
    • /
    • 제21권2호
    • /
    • pp.127-133
    • /
    • 2012
  • 친환경 유기농자재를 이용하여 고추 탄저병균의 포자 발아, 균사생장 억제효과를 기내에서 조사하였다. 그 결과 균사생장 억제효과 기내검정. 탄저병의 균사생장 억제 효과는 Bacillus subtilis를 주성분으로 하는 제제가 100%의 억제효과를 보였으며, 그 외의 제제는 20~40%의 범위에서 억제효과를 나타내었다. 포자발아억제효과는 유황 수화제 2종('BTB', '황스타')이 각각 100%, 95.1%, '고려역'(95.0%), '보르스타'(99.0%), '지하부대 KM'(96.1%) 순으로 나타났다. 균사생장 억제와 포자 발아억제, 부착기 형성억제 결과를 고려하여 고추 탄저병 방제에 적용 가능한 친환경 방제제는 Bacillus subtilis, Panibacillus polymyxa 혼용제('고려역')가 가장 효과적인 것으로 판단되었으며, 예방을 전제로 한 방제의 경우 유황 수화제, 보르도액을 주성분으로 하는 제제가 적용 가능할 것으로 생각된다. 본 연구에서 선택된 제제는 고추 포장에서 탄저병 방제효과가 최종적으로 인정되면 차후 고추 탄저병 방제에 이용될 것으로 사료된다.

잔디 뿌리병 병원균인 Rhizoctonia solani의 성장을 저해하는 미생물 선발 (Screening of Potent Biofungicide for the Growth Inhibition of Soilborne Pathogenic Fungi, Rhizoctonia solani)

  • 이은열;이재화
    • 생명과학회지
    • /
    • 제13권3호
    • /
    • pp.355-358
    • /
    • 2003
  • 식물 병원성 진균인 Rhizoctonia solani에 대한 길항능이 있는 Trichoderma 계열의 미생물 균주를 선별하였다. R. solani의 성장을 저해하는 능력이 우수한 균주를 선별하기 위하여 일차적으로 PDA 평판에서 inhibition zone을 측정하였고, 병원성 진균의 세포벽을 용해시킬 수 있는 세포외 효소인 glucanase 및 chitinase 활성을 분석하였다. 4∼5 mm 이상의 inhibition zone을 보여주었고, glucanase 및 chitinase 활성이 우수한 Trichoderma sp. UK-3와 T. viride 균주들을 선별할 수 있었다.

제충국화(除?菊花) 추출물(抽出物)의 항진균작용(抗眞菌作用) (Antifungal Activity of Extracts from Pyrethrum Cinerariaefolium V.)

  • 이종화;조선희;송병숙;백운상
    • 대한약리학회지
    • /
    • 제9권1호
    • /
    • pp.59-63
    • /
    • 1973
  • Although numerous drugs are available for the treatment of superficial fungi infections of skin, and yet the clinical effects of most of such drugs are not satisfactory. In the hope of searching for effective drugs for superficial fungi infections, the authors observed fungistatic effects of Pyrethri Flos, a common herb in Korea, with water extract (PFWE), ethanol extract (PFEE), and methanol extract (PFME) from Pyrethrum cinerariaefolium V. In in vitro studies, the spores of fungi were inoculated on Sabouraud's glucose agar media which contained Pyrethri Flos extracts in each concentrations of $500\;{\mu}g/ml$, $1,000\;{\mu}g/ml$ and $5,000\;{\mu}g/ml$ respectively, and the growth of the fungi was observed for 3 weeks. The species of the fungi used in these experiments were Epidermophyton floccosum, Microsporum canis, Microsporum nanum, Microsporum gypseum, Microsporum cookei, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Trichophyton verrucosum. The results of these studies were as follows; 1. The growth of M. nanum & T. rubrum was slightly inhibited by PFWE $500\;{\mu}g/ml$, and the growth of M. nanum, M. cookei & T. rubrum was slightly inhibited by PFWE $1,000\;{\mu}g/ml$. The growth of E. floccosum, M. gypseum & M. cookei was slightly inhibited, however the growth of M. canis, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans was significantly inhibited by PFWE $5,000\;{\mu}g/ml$. With $500\;{\mu}g/ml$ of PFEE, the growth of M. canis, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans was significantly inhibited, and moderate inhibition of M. cookei growth and slight inhibition E. floccosum & M. gypseum were observed. The growth of M. canis, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans was significantly inhibited, and the growth of E. floccosum, M. gypseum & M. cookei was moderately inhibited by PFEE $1,000\;{\mu}g/ml$. Significant inhibitions of the growth of E. floccosum, M. canis, M. nanum, M. gypseum, M. cookei, T. mentagrophytes, T. rubrum & T. tonsurans were observed by PFEE $5,000\;{\mu}g/ml$. 3. The growth of E. floccosum & M. cookei was moderately inhibited, and the growth of M. canis, M. nanum, M. gypseum, M. mentagrophytes, T. rubrum & T. tonsurans was significantly inhibited by PFME $500\;{\mu}g/ml$. But the growth of E. floccosum, M. canis, M. nanum, M. gypseum, M. cookei, T. mentagrophytes, T, rubrum & T. tonsurans was significantly inhibited, and the growth of T. verrucosum was slightly inhibited in both PFME $1,000\;{\mu}g/ml$ and $5,000\;{\mu}g/ml$.

  • PDF

Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens

  • Cai, Shu-Ting;Chiu, Ming-Chung;Chou, Jui-Yu
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.69-77
    • /
    • 2021
  • The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.

Pseudomonas spp.의 Rhizoctonia solani 및 Pythium spp. 병원균에 대한 길항작용 (Antagonism of Pseudomonas spp. against to Rhizoctonia solani and Pythium spp.)

  • 주영규;한정훈
    • 아시안잔디학회지
    • /
    • 제8권1호
    • /
    • pp.47-52
    • /
    • 1994
  • Attempts were made to investigate the antagonistic activity of soil borne microorganisms Pseudomonas spp. and Trichoderma spp. against to the pathogens of turf diseases Rhizoctionia solani spp. and Pythiom spp. in vitro by a dual culture bioassay. Inhibition zone between the edge of the my-celium and the margin of each antagonistic bacteria, Pocudontonas, on potato dextrose agar was measured 3 days after incubation at 28˚C. Psudomonas spp. showed relatively high inhibition of mycelium growth of R. solani AG-i and Pythium spp. which cause brown patch and pythium blight, respectively. Antagonistic fungi Trichodenma spp. also showed effective inhibition against mycelium growth of both pathogens, more proper methods of measuring the inhibition effects were required because of fast growth of Trichodenna hypae. Brown patch and pythium blight both, re-quire most higher rate of fungicide use to control in golf curses in Korea. Application of antagon-istic microorganisms are useful as biological resources an approach to sole environmental contamination.

  • PDF

Effect of Acaromyces Ingoldii Secondary Metabolites on the Growth of Brown-Rot (Gloeophyllum Trabeum) and White-Rot (Trametes Versicolor) Fungi

  • Olatinwo, Rabiu;So, Chi-Leung;Eberhardt, Thomas L.
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.506-511
    • /
    • 2019
  • We investigated the antifungal activities of an endophytic fungus identified as Acaromyces ingoldii, found on a loblolly (Pinus taeda L.) pine bolt in Louisiana during routine laboratory microbial isolations. The specific objectives were to determine the inhibitory properties of A. ingoldii secondary metabolites (crude extract) on the mycelial growth of a brown-rot fungus Gloeophyllum trabeum and a white-rot fungus Trametes versicolor, and to determine the effective concentration of A. ingoldii crude preparation against the two decay fungi in vitro. Results show the crude preparation of A. ingoldii from liquid culture possesses significant mycelial growth inhibitory properties that are concentration dependent against the brownrot and white-rot fungi evaluated. An increase in the concentration of A. ingoldii secondary metabolites significantly decreased the mycelial growth of both wood decay fungi. G. trabeum was more sensitive to the inhibitory effect of the secondary metabolites than T. versicolor. Identification of specific A. ingoldii secondary metabolites, and analysis of their efficacy/specificity warrants further study. Findings from this work may provide the first indication of useful roles for Acaromyces species in a forest environment, and perhaps a future potential in the development of biocontrol-based wood preservation systems.

In Vitro Antagonistic Effects of Bacilli Isolates against Four Soilborne Plant Pathogenic Fungi

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • 제24권1호
    • /
    • pp.52-57
    • /
    • 2008
  • Twenty isolates of Bacillus spp. obtained from livestock manure composts and cotton-waste composts were tested for in vitro antagonistic effects against soilborne plant pathogenic fungi, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani AG-4, and Sclerotinia sclerotiorum. Seven isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of F. oxysporum tested. The bacterial isolate RM43 was the most effective to inhibit the mycelial growth of the fungal isolates. Twelve isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of P. capsici tested. The bacterial isolates M34 and M47 were very effective to inhibit the mycelial growth of the fungal isolates. Thirteen isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of R. solani AG-4 tested. The bacterial isolates M27 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. Fourteen isolates of Bacillus sp. had antagonistic effects on mycelial growth of all the isolates of S. sclerotiorum tested. The bacterial isolates M49 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. The antagonistic effects of most Bacillus spp. isolates against the isolates of the four fungi differed depending on the fungal species and the isolates of each fungus. The bacterial isolates M27 and M75 were the most effective to inhibit the mycelial growth of all four fungi.

목재변색균(木材變色菌) 및 표면오염균류(表面汚染菌類)에 대(對)한 Streptomyces rimosus의 항균대사(抗菌代謝) (I) -2차(次) 대사물질(代謝物質)의 항균효능(抗菌效能)- (Antifungal Metabolisms of Streptomyces rimosus against Sapstain and Mold Fungi(I) -Antifungal Efficacy of Secondary Metabolites-)

  • 강규영;이동흡;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권1호
    • /
    • pp.42-48
    • /
    • 1995
  • The purpose of this study is to evaluate the efficacy of metabolites produced form Streptomyces rimosus in controlling the growth of sapwood - inhabiting fungi. In order to carry out this task, the following specific fungi were tested : sapstain fungi - Ceratocystis pilifera, Ceratocystis piceae, and Aureobasidium pullulans ; mold fungi - Trichoderma hazianum, Trichoderma viride, Penicillium cirtrinum, and Aspergillus niger. Based on the tests, the following observations can be drawn. 1. The conidial germination of sapstain and mold fungi was completely inhibited leaving a clear zone around the paper disc treated with metabolites. The best inhibition was observed in A. pullulans plate and the least in T. viride. 2. Concentration of SB medium for the production of metabolites from St, rimosus affected antifungal activity of metabolites against sapwood - inhabiting fungi. Metabolites prepared from 1/3${\times}$SB medium showed the best activity and the least activity was observed in metabolites form 1/4${\times}$medium. 3. in vivo and in vitro test using wood blocks, treatment of pine sapwood blocks with metabolites also inhibited conidial germination and thus prevented discoloration. 4. Treatment with metabolites did not change the macroscopic structure of wood and did not cause the discoloration of the surface of wood by pigments produced form St. rimosus. In conclusion the results of this study indicate that antifungal metabloites of St, rimosus could be used for the biological control of sapstain and mold fungi.

  • PDF

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon;Kim, Kyoung-Su;Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Seung-Bin;Jung, Moo-Young;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.376-380
    • /
    • 2009
  • Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.

Isolation of Lichen-forming Fungi from Hungarian Lichens and Their Antifungal Activity Against Fungal Pathogens of Hot Pepper Anthracnose

  • Jeon, Hae-Sook;Lokos, Laszlo;Han, Keon-Seon;Ryu, Jung-Ae;Kim, Jung-A;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.38-46
    • /
    • 2009
  • Lichen-forming fungi (LEF) were isolated from 67 Hungarian lichen species from ascospores or thallus fragments. LFF were successfully isolated from 26 species with isolation rate of 38.8%. Of the total number of isolation from ascospores (27 species) and thallus fragments (40 species), 48% and 32.5% of the species were successfully isolated, respectively. Comparison of rDNA sequences of ITS regions between the isolated LFF and the original thallus confirmed that all the isolates originated from the thallus fragments were LEF. The following 14 species of LEF were newly isolated in this study; Acarospora cervina, Bacidia rubella, Cladonia pyxidata, Lasallia pustulata, Lecania hyaline, Lecanora argentata, Parmelina tiliacea, Parmotrema chinense, Physconia distorta, Protoparmeliopsis muralis, Ramalina pollinaria, Sarcogyne regularis, Umbilicaria hirsuta, Xanthoparmelia conspersa and X. stenophylla. Antifungal activity of the Hungarian LFF was evaluated against plant pathogenic fungi of Colletotrichum acutatum, C. coccodes and C. gloeosporioides, causal agent of anthracnose on hot pepper. Among the 26 isolates, 11 LFF showed more than 50% of inhibition rates of mycelial growth of at least one target pathogen. Especially, LFF of Evernia prunastri, Lecania hyalina and Lecanora argentata were remarkably effective in inhibition of mycelial growth of all the tested pathogens with antibiotic mode of action. On the other hands, five isolates of Cladonia furcata, Hypogymnia physodes, Lasallia pustulata, Ramalina fastigiata and Ramalina pollinaria exhibited fungal lytic activity against all the three pathogens. Among the tested fungal pathogens, C. coccodes seemed to be most sensitive to the LFF. The Hungarian LFF firstly isolated in this study can be served as novel bioresources to develop new biofungicides alternative to current fungicides to control hot pepper anthracnose pathogenic fungi.