Browse > Article

Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro  

Kwak, Young-Ki (Kangwon National University)
Kim, Il-Seop (Kangwon National University)
Cho, Myeong-Cheoul (National Institute of Horticultural & Herbal Science, Rural Development Administration)
Lee, Seong-Chan (National Institute of Horticultural & Herbal Science, Rural Development Administration)
Kim, Su (National Institute of Horticultural & Herbal Science, Rural Development Administration)
Publication Information
Journal of Bio-Environment Control / v.21, no.2, 2012 , pp. 127-133 More about this Journal
Abstract
Inhibition effects on spore germination and mycelia growth for pepper anthracnose fungi (Collectricum acutatum) were investigated in vitro using eco-friendly agricultural materials as well as ecofriendly pesticides. The inhibition effect on mycelia growth of anthracnose fungi is the highest when the anthracnose mycelia were treated with a pesticide (commercial name: Koreayeok) that contains a mixture of Bacillus subtilis and Panibacillus polymyxa, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of 20~40% inhibition effects on the growth of anthracnose mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore formation of anthracnose fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (100%) and SulfurStar (95.1%)], Koreayeok (95.0%), Borstar (99.0%) containing Bordeaux mixture, and Jihabudea-KM containing Psedomonas spp. (96.1%), respectively. Taken from these in vitro results of inhibiting of the spore germination and mycelia growth together, Koreayeok is the most effective on control of pepper anthracnose disease in vitro. In addition, two water dispersible pesticides containing sulfur (BTB and SulfurStar) and Borstar (99.0%) containing Bordeaux mixture are also significantly applicable to prevent pepper plants from anthracnose disease in vitro. It remains to be determined whether the selected eco-friendly agricultural materials in effective control of anthracnose in vitro can be used to control pepper anthracnose in field.
Keywords
anthracnose fungi; Bacillus subtilis; Bordeaux mixture; mycelia growth Sulfur; Panibacillus polymyxa;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 AVRDC. 1999. Off-season tomato, pepper and eggplant.: AVRDC 1998. Progress Report. Taiwan.
2 Berke, T., L.L. Black, and C.A. Liu. 1999. Breeding for anthracnose and Phytophthora resistance in hot pepper (Capsicum annuum). J. Kor. Capsicum Res. Coop. 5:1-15.
3 Cho, M.C., Y. Chae, Y.S. Cho, K.D. Ko, Y.A. Shin, D.H. Kim, and J.W. Jung. 2005. The result of new pepper varieties evaluation at farmer's field. Korean J. Hort. Sci. Technol. 23:38.
4 Choi, Y.H., H.T. Kim, J.C. Kim, K.S. Jang, K.Y. Cho, and G.J. Choi. 2006. In vitro antifungal activities of 13 fungicides against pepper anthracnose fungi. The Kor. J. of Pesticide Sci. 10:36-42.
5 Hadden, J.F. and L.L. Black. 1989. Anthracnose of pepper caused by Colletotrichum spp. proceeding of the international symposium on integrated management practices: Tomato and pepper production in the tropics; Taiwan: Asian Vegetable Research and Development Centre. 189-199.
6 Haggag, W.M. and S. Timmusk. 2007. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology 104:961-969.
7 Jee, H.J., S.S. Shin, J.H. Lee, W.I. Kim, S.J. Hong, and Y.K. Kim. 2010. Conidial disperse of the pepper anthracnose fungus Colletotrichum acutatum and its density on infected fruits. Res. Plant Dis. 16:101-105.   DOI
8 Kim, S., K.T. Kim, D.H. Kim, E.Y. Yang, M.C. Cho, A. Jamal, Y. Chae, D.H. Pae, D.G. Oh, and J.K. Hwang. 2010. Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Kor. J. Hort. Sci. Technol. 28:1014- 1024.
9 Krebs, B., B. Hoding, S. Kübart, M.A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biological control agent. I. Activities and characterisation of Bacillus subtilis strains. J. Plant Dis. Prot. 105:181-197.
10 Kwon, C.S. and S.G. Lee. 2002. Occurrence and ecological characteristics of red pepper anthracnose. Res. Plant Dis. 8:120-123.   DOI
11 Lee, G.W., M.J. Kim, J.S. Park, J.C. Chae, B.Y. Soh, J.E. Ju, and K.J. Lee. 2011. biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17:86-89.   DOI
12 Leoffler, W., J.S. Tschen, N. Venittanakom, M. Kugler, E. Knorpp, T.F. Hsieh, and T.G. Wu. 1986. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F-29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115:204-213.   DOI
13 Paulitz, T.C. and J.E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81: 930-935.   DOI
14 Perez-Garcia, A., D. Romero, and A. de Vicente. 2011. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193.   DOI   ScienceOn
15 Seo, S.T., J.H. Park, K.H. Kim, S.H. Lee, E.S. Oh, and S.C. Shin. 2008. Suppression of bacterial Wilt in tomato plant using Pseudomonas putida P84. Res. Plant Dis. 14:32-36.   DOI
16 Raaijmakers, J.M., D.M. Weller, and L.S. Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. In natural environments. Appl. Environ. Microbiol. 63: 881-887.
17 RDA. 2011. Information of agricultural materials. http://www.rda.go.kr/matEnvofood Detail.do.
18 Romero, D., A. de Vicente, R.H. Rakotoalay, S.E. Dufour, J.-W. Veening, A. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot, and A. Perez-Garcia. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. MPMI. 20:430-440.   DOI   ScienceOn
19 Son, S.H., Z. Khan, S.G. Kim, and Y.H. Kim. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology 107(2):524-532.   DOI   ScienceOn
20 Vidhyasekaran, P., K. Sethuraman, K. Rajappan, and K. Vasumath. 1997. Powder formulations of Pseudomonas fluorescens to control pigeonpea wilt. Biol. Control 8:166-171.   DOI   ScienceOn
21 Watanabe, T., W. Oyanagi, K. Suzuki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172:4017-4022.
22 Winding, A., S.J. Binnerup, and H. Pritchard. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47:129-141.   DOI   ScienceOn
23 Zeriouh, H., D. Romero, L. Garcia-Gutierrez, F.M. Cazorla, A. de Vicente, and A. Perez-Garcia. 2011.The Iturin-like Lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. MPMI 24:1540-1552.   DOI   ScienceOn
24 Wulff, E.G., C.M. Mguni, K. Mansfeld-Giese, J. Fels, M. Lubeck, and J. Hockenhull. 2002. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol. 51:574-584.   DOI   ScienceOn
25 Yin, J.F., W.H. Zhang, J.Q. Li, Y.H. Li, H.L. Hou, and X.Y. Zhou. 2007. Screening and antagonistic mechanism of biocontrol agents against Phytophthora blight of pepper. Acta Phytopathologica Sinica. 37:88-94.
26 Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187.   DOI   ScienceOn