Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.1.038

Isolation of Lichen-forming Fungi from Hungarian Lichens and Their Antifungal Activity Against Fungal Pathogens of Hot Pepper Anthracnose  

Jeon, Hae-Sook (Korean Lichen Research Institute, Sunchon National University)
Lokos, Laszlo (Botanical Department of the Hungarian Natural History Museum)
Han, Keon-Seon (Korean Lichen Research Institute, Sunchon National University)
Ryu, Jung-Ae (Korean Lichen Research Institute, Sunchon National University)
Kim, Jung-A (Korean Lichen Research Institute, Sunchon National University)
Koh, Young-Jin (Korean Lichen Research Institute, Sunchon National University)
Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
Publication Information
The Plant Pathology Journal / v.25, no.1, 2009 , pp. 38-46 More about this Journal
Abstract
Lichen-forming fungi (LEF) were isolated from 67 Hungarian lichen species from ascospores or thallus fragments. LFF were successfully isolated from 26 species with isolation rate of 38.8%. Of the total number of isolation from ascospores (27 species) and thallus fragments (40 species), 48% and 32.5% of the species were successfully isolated, respectively. Comparison of rDNA sequences of ITS regions between the isolated LFF and the original thallus confirmed that all the isolates originated from the thallus fragments were LEF. The following 14 species of LEF were newly isolated in this study; Acarospora cervina, Bacidia rubella, Cladonia pyxidata, Lasallia pustulata, Lecania hyaline, Lecanora argentata, Parmelina tiliacea, Parmotrema chinense, Physconia distorta, Protoparmeliopsis muralis, Ramalina pollinaria, Sarcogyne regularis, Umbilicaria hirsuta, Xanthoparmelia conspersa and X. stenophylla. Antifungal activity of the Hungarian LFF was evaluated against plant pathogenic fungi of Colletotrichum acutatum, C. coccodes and C. gloeosporioides, causal agent of anthracnose on hot pepper. Among the 26 isolates, 11 LFF showed more than 50% of inhibition rates of mycelial growth of at least one target pathogen. Especially, LFF of Evernia prunastri, Lecania hyalina and Lecanora argentata were remarkably effective in inhibition of mycelial growth of all the tested pathogens with antibiotic mode of action. On the other hands, five isolates of Cladonia furcata, Hypogymnia physodes, Lasallia pustulata, Ramalina fastigiata and Ramalina pollinaria exhibited fungal lytic activity against all the three pathogens. Among the tested fungal pathogens, C. coccodes seemed to be most sensitive to the LFF. The Hungarian LFF firstly isolated in this study can be served as novel bioresources to develop new biofungicides alternative to current fungicides to control hot pepper anthracnose pathogenic fungi.
Keywords
Antifungal activity; biofungicide; bioresource; lichen-forming fungi; hot pepper anthracnose;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Arup, U. 2002. PCR techniques and automated sequencing in lichens. In: Protocols in lichenology: culluring. biochemistry, ecophysilolgy and use in biomollitoring, ed. by I. Kranner, R. P. Beckett and A. K. Vanna, pp. 392-411. Springer-Verlag, New York
2 Gulluce, M., AsIan, A, Sokmen, M., Adiguzel, A, Agar, G and Sokmen, A. 2006. Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Plastismatia glauca, Ramatina pollinaria. Ramatina po(vmorpha and Umbilicaria nylanderiana. Phytomedicine 13:515-521   DOI   ScienceOn
3 IndexFungorwn: http://www.indexfungorum.org
4 Milller, K. 2001. Phamaceutically relevant metabolites from lichens. Appl. Microbiol Biotrchnol. 56:9-16   DOI   ScienceOn
5 De los Rios, A., Ramirez, R. and Estevez, P. 1997. Production of several isoforms of $\beta$-1 ,4-glucanase by the cyanolichen Peltigera caninu. Physiol. Plant. 100: 159-164   DOI   ScienceOn
6 Yamamoto, Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenology 1: 11-22
7 Behera. B. C. Verma, N., Sonone, A and Makhija, U. 2005. Evaluation of antioxidant potential of the cultured rnycobiont of a lichen Usnea ghattensis. Phytother. Res. 19:58-64   DOI   ScienceOn
8 Crittenden, P. D., Davis, J. C, Hawksworth, D. L. and Campbell, F. S. 1995. Attempted isolation and SUCcess in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytologist 130:267-267   DOI   ScienceOn
9 Behera, B. C, Adawadkar, B. and Makhija, U. 2006b. Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77:208-215   DOI   ScienceOn
10 Crittcnden, P. D. and Porter, N. 1991. Lichen-forming fungi: potential sources of novel metabolites. Trend Biotechnol. 9:409-414   DOI   ScienceOn
11 Yoshimura, I., Yamamoto, Y., Nakano, T. and Finnie, J. 2002. Isolation and culture of lichen photobionts and mycobionts. In: Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, ed. by I. Kranner, R. P. Beckett and A. K. Varma, pp. 3-33. Springer-Verlag, New York
12 Kirk, P. M., Cannon, P. F., David J. C. and Stalpers, J. A 2001. Dictionary offungi. 9th ed. CABl Bioscience, Egham, UK
13 Culberson, C. F. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatography 72: 113-125   DOI   ScienceOn
14 Perry, N. B., Benn, M. H., Brennan, N. J., Burgess, E. J., Ellis, G, Galloway, D. J., Lorimer, S. D. and Tangney, R. S. 1999. Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31 :627-636   DOI
15 White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to methods and applications, ed. by M. A Inni', D. H. Gelfand, J. J. Sninsky, and T. J. White, pp. 315-322. Academic Press, New York
16 Ekman, S. 1999. PCR optimization qand troubleshooting, with special refemce to the amplification of ribosomal DNA in lichenized fungi. Lichenologist 31:517-531   DOI
17 Wei, X., Jean. H.-S., Han, K. S., Koh, Y. J. and Hur, J-S. 2008. Antifungal activity of lichen-forming fungi against Colletotri-chum acutatum on hot pepper. Plant Pathol. J. 24:202-206   DOI   ScienceOn
18 Shin, H. J., Chen, Z. J., Hwang, J. M, and Lee, S. G 1999. Comparison of pepper anthracnose pathogen from Korea and China. Plam Pathol. J. 15:323-329
19 Kang, B. K., Min J. Y, Kim Y S., Park, S. W, Bach, N. V. and Kim, H. T.2005. Semi-selective medium for monitoring Colletorichum acuta/um causing pepper anthracnose in the field. Res. Plant Dis. 11 :21-27. (in Korean)   DOI   ScienceOn
20 Ingolfsdottir, K. 2002. Molecules of interest: usnic acid. Phytochemisny 64:729-736   DOI   ScienceOn
21 Laufer, Z., Beckett, R. P., Minibayeva, F. V., Lilthje, S. and Bottger, M. 2006. Occurrence of laccases in lichenized ascomycetes of the Peltigcrineae. Mycol. Res. 110:846-853   DOI   ScienceOn
22 Ahmadjian, V. 1993. The lichen symbiosis. 2nd ed. John Wiely & Sons, Inc., New York, USA
23 Petrini, O., Hake, U. and Dryfuss, M. M. 1990. An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444-451   DOI
24 Yamamoto, Y, Mizuguchi, R. and Yamada, Y 1985. Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric. BioI. Chem. 49: 3347-3348   DOI
25 Yamamoto, Y., Kinoshita, Y. and Yoshimura, I. 2002. Culture of thallus fragments and redifferentiation of lichens. In: Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, ed. by I. Kranner, R. P. Beckett and A. K. Varma, pp. 34-46. Springer-Verlag, New York
26 Yamamoto, Y, Kinoshita, Y., Matsubara, H.. Kinoshita, K., Koyama, K., Takahashi, K., Kurokawa, T. and Yoshimura, I. 1998. Screening of biological activities and isolation of biological active compounds from lichens. Recent Res. in Phytochem. 2:23-34
27 Behera, B. C, Verma, N., Sonone, A and M akhij a, U. 2006a. Experimental studies on the growth and usnic acid production in 'lichen' Usnea ghattensis in vitro. Microbiol. Res. 161:232-237   DOI   ScienceOn
28 Beckett, R. P and Minibayeva, F. V. 2007. Cell wall redox enzymes in lichens: A role in desiccation tolerance. South African J. Bot. 73:482
29 Halama, P. and Van Halywin, C. 2004. Antifungal activity of lichen extracts and lichenic acids. BioControl. 49:95-107   DOI   ScienceOn