• Title/Summary/Keyword: fungal pathogen

Search Result 340, Processing Time 0.033 seconds

Identification and Characteristics of Sclerotinia homoeocarpa Causing Dollar Spot Disease in Zoysiagrass (한국잔디에 발생한 달라스팟 병의 주요 원인균인 Sclerotinia homoeocarpa의 동정 및 특성)

  • Park Dae-Sup;Kim Kyong-Duck;Yeom, Su-Rip;Oh Byung-Seog;Park Byoung-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • A fungal isolate was newly collected from Zoysiagrass 'Anyang-Joongji' in small circular patches on a fairway ofa golf course in Korea, which seriously occurred during the early summer period of 2005. The isolate presented on PDAmedium, named Scz1, was closely identical to Sclerotinia homoeocarpa, a casual fungus of dollar spot disease, in cool season turf grasses such as creeping bentgrass. Hereby, this study was accomplished to characterize the isolate and compare it with the fungus, named Scb1, isolated from dollar spot-infected creeping bentgrass (Agrostis palustris Huds. cv Penncross). On PDAmedium, individual mycelial appearance of three isolates was very similar except for the pigment. Mycelial pigments of Scz1 and Scz2 (another analogous isolate collected) were light pinkish on the reverse side of PDA medium but that of Scb1 was dark brownish. In a microscopic study, three isolates were barely distinguishable in the appearance of mycelia. As expected, in the temperaturesensitivity assay, all pathogens were very delicate to $32^{circ}C$ above but not to $30^{circ}C$ below, in which was explained to be one of typical characteristics in S. homoeocarpa. In an artificial inoculation assay, disease symptoms including leaf spots in Zoysiagrass were appeared within 6-7 days after inoculation through the hand inoculation method with the isolate-infested soil. Then the fungus was re-identified from the infected leaf tissues. Interestingly, inoculation of isolate Scz1 gave rise to distinct symptoms in only Zoysiagrass but not in creeping bentgrass 'Penncross' and Kentucky bluegrass 'Midnight'. The observation might be involved in host specific pathogenecity of S. homoeocarpa Scz1 to Zoysiagrass. In a chemical sensitivity assay for the isolate, Scz1, showed a high mycelial inhibition against two fungicides, iprodione and propiconazole. All results described above suggest that S. homoeocarpa Scz1 is a primary pathogen of Zoysia dollar spot disease.

Effective Heat Treatment Techniques for Control of Mung Bean Sprout Rot, Incorporable into Commercial Mass Production

  • Lee, Jung-Han;Han, Ki-Soo;Kim, Tae-Hyoung;Bae, Dong-Won;Kim, Dong-Kil;Kang, Jin-Ho;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Seedlot disinfection techniques to control mung bean sprout rot caused by Colletoricum acutatum and C. gloeosporioides were evaluated for commercial production scheme. Soaking seedlots in propolis (100 X) and ethanol (20% for 30 min) appeared promising with control values of 85.5 and 80.8 respectively, but still resulted in up to 20% rot incidence. None of the C. acutatum conidia survived through hot water immersion treatment (HWT) for 10 min at temperatures of 55, 60 and $65^{\circ}C$, whereas the effective range of the dry heat treatment (DHT) was $60-65^{\circ}C$. Tolerance of mung bean seedlot, as estimated by hypocotyl elongation and root growth, was lower for HWT than for DHT. Germination and growth of sprouts were excellent over the range of $55-65^{\circ}C\;at\;5^{\circ}C$ intervals, except for HWT at $65^{\circ}C$ for 5 min. At this marginal condition, heat damage appeared so that approximately 2% of seeds failed to sprout to normal germling and retarded sprouts were less than 5% with coarse wrinkled hypocotyls. These results suggested that DHT would be more feasible to disinfect mung bean seedlots for commercial sprout production. Heat treatment at above ranges was highly effective in eliminating the epiphytic bacterial strains associated with marketed sprout rot samples. HWT of seedlot at 55 and $60^{\circ}C$ for 5 min resulted in successful control of mung bean sprout rot incidence with marketable sprout quality. DHT at 60 and $65^{\circ}C$ for 30 min also gave good results through the small-scale sprouting system. Therefore, we optimized DHT scheme at 60 and $65^{\circ}C$ for 30 min, considering the practical value of seedlot disinfection with high precision and accuracy. This was further proved to be a feasible and reliable method against anthracnose incidence and those bacterial strains associated with marketed sprout rot samples as well, through factory scale mung bean sprout production system.

Synthesis of Pyto-patch as Silver Nanoparticle Product and Antimicrobial Activity (은나노 제품인 Pyto-patch의 제조공정 및 Pyto-patch의 고추 탄저병 방제효과)

  • Kwak, Young-Ki;Kim, Seong-Il;Lee, Jong-Man;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2012
  • The commercial product "pyto-patch" prepared as nano sized silver particle less than 5 nm, has effective antifungal activity against Collectotrichum gloeosporioides, Botrytis cinerea, Sclerotinia sclerotiorum in vitro. As a fungal growth inhibiton mechanism, it can reduce spore germination rate and mycelial growth. As s promising fungicide, Phyto-patch can control anthracnose effectively. The spore of C. gloeosporioides dipped in 5 ppm phyto-patch dilute suppressed germination rate to 13.2%, and mycelial growth stopped for 15 days at 10 ppm. The spore postinoculated on 10 ppm phyto-path smeared PDA surface could not germinate for 3 days and prohibit pathogen infection effectively. In field test, the anthracnose development of 4 ppm phyto-patch treated plot was less than 7% after 21 days compaired to 40% of it in untreated plot. In heavy rainfall season, pepper anthracnose effectivly contrrolled by regular 10 ppm phytopatch spraying every 7 days. The diseased pepper fruit decreased to 5.8% compaired to 94.6% in untreated plot. During drying period, the diseased pepper fruit havested in phyto-patch treated plot was 24.2%, but pepper fruit havested in untreated plot destroyed to 100% within 3 days. The nano silver particle coated on multching textile prevented late blight of pepper effectively and disease occurance delayed about month.

Development of an Efficient Mass-screening Method for Testing the Resistance of Radish to Fusarium Wilt (무 시들음병에 대한 간편한 대량 저항성 검정법 개발)

  • Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Hun;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.152-157
    • /
    • 2016
  • Root-dipping inoculation method has been used to investigate resistance of radish plants to Fusarium wilt. However, the method requires a lot of labor and time because of complicate procedure. This study was conducted to establish a simple and effective mass-screening method for resistant radish to Fusarium wilt. Radish seedlings of susceptible and resistant cultivars were used to investigate wounding method by scalpel, inoculum concentration, and pathogen-inoculated growth stage of seedlings. We established an efficient mass-screening method based on our results as following: Roots of 14-day-old seedlings of radish are cut with a scalpel at a $90^{\circ}$ angle to a 2 cm-depth at a 1 cm-distance from main stem and then inoculated by pouring with a 10 ml-aliquot of a fungal spore suspension ($1.0{\times}10^7conidia/ml$) on soil. The inoculated plants are cultivated in a growth room at $25^{\circ}C$ for about 4 weeks with 12-hour light a day. The proposed screening method enables to effectively select resistant from mass radish plants cultivars to Fusarium wilt.

Isolation and Characterization of Colletotrichum Isolates Causing Anthracnose of Japanese Plum Fruit (자두 탄저병균의 분리 및 동정)

  • Lee, Yong-Se;Ha, Da-Hee;Lee, Tae-Yi;Park, Min-Jung;Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • BACKGROUND: Although the filamentous fungal pathogen Colletotrichum species causing anthracnose disease on various fruits including peach, apple, persimmon and grape, there is no report on Japanese plum in Korea. METHODS AND RESULTS: In 2016, diseased fruits showing typical anthracnose symptoms of Japanese plum were collected in market and ochards. Diseased tissue was cut off and disinfected subsequently with 70% ethanol for 1 min, and in 1% sodium hypochloride solution for 1 min, followed by three washes with sterile distilled water. The disinfected tissues were placed onto potato dextrose agar (PDA), and incubated at $25^{\circ}C$ in the dark for 5 to 7 days. For single-spore isolation, conidia were scraped off the plate using a loop, and suspended with 10 mL sterile distilled water. One hundred microliter of the conidial suspension was spread on PDA plates and incubated at $25^{\circ}C$. Finally, one germinated conidium was transferred onto PDA plates. Morphological and cultural characteries of colonies and spores of isolated Colletotrichum were observed after 7 to 10 days incubation on PDA. Molecular identification of isolates were analyzed by comparing rDNA-ITS gene sequences with NCBI GeneBank. CONCLUSION: Of eleven isolates of Colletotrichum isolated from anthracnose diseased Japanese plum fruits, six were identified as C. acutatum, and five as C. gloeosporioides based on diagnostic characteristics such as colony growth rate, shape and size of conidia, and rDNA-ITS sequences. This is the first report of Colletotrichum causing the anthracnose on Japanese plum in Korea.

Antifungal Activity of Rheum undulatum on Candida albicans by the Changes in Membrane Permeability (막투과성 변화로 인한 대황의 Candida albicans에 대한 항진균 활성)

  • Lee, Heung-Shick;Kim, Younhee
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.360-367
    • /
    • 2014
  • Candida albicans is an opportunistic and the most prevalent fungal pathogen that can cause superficial and systemic infections in immunocompromised patients. C. albicans can promote the transition from budding yeast to filamentous form, generating biofilms. Infections associated with C. albicans biofilms are frequently resistant to conventional antifungal therapy. Therefore, the development of more effective antifungal drugs related with biofilm formation is required urgently. The roots of Rheum undulatum have been used for medicinal purposes in Korea and China traditionally. The aim of present study was to evaluate the effect of R. undulatum extract upon preformed biofilms of 12 clinical C. albicans isolates and the antifungal activities. Its effect on preformed biofilms was evaluated using XTT reduction assay, and metabolic activity of all tested strains was reduced significantly ($49.4{\pm}6.0%$) at 0.098 mg/ml R. undulatum. The R. undulatum extract blocked the adhesion of C. albicans biofilms to polystyrene surfaces, and damaged the cell membrane integrity of C. albicans which was analyzed by CFDA, AM, and propidium iodide double staining. It caused cell lysis which was observed by Confocal laser scanning and phase contrast microscope after propidium iodide and neutral red staining, respectively. Membrane permeability was changed as evidenced by crystal violet uptake. The data suggest that R. undulatum inhibits biofilm formation by C. albicans, which can be associated with the damage of the cell membrane integrity, the changes in the membrane permeability and the cell lysis of C. albicans.

Effects of Different Seeding Rates on Disease Incidences of Wheat Sharp Eyespot and Selection of Fungicides (밀 잎집눈무늬병의 발생에 파종량이 미치는 영향과 방제 약제 선발)

  • Park, Jong-Chul;Lee, Eun-Sook;Cho, Kwang-Min;Lee, Mi-Ja;Kang, Chun-Sik;Choi, Jae-Seong
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • This study was conducted to examine the effects of the seeding rate on the disease incidence of sharp eyespot(Rhizoctonia cerealis) on three different varieties and to select effective chemicals to control the disease. When the seeds were sown twice as many as the recommendation, the disease incidence increased by approximately 13%. However, the susceptible variety 'Jopummil' alone showed the significantly enhanced disease incidence at a two-fold seeding rate. Two chemicals such as Hexaconazole EC and Tebuconazole EC highly inhibited the fungal growth on agar medium. However, two strobilurin fungicides such as Pyraclostrobin EC and Trifloxystrobin SC were relatively weak. The fungicides tested displayed the similar in vivo antifungal activities as in vitro activities. Hexaconazole EC and Tebuconazole EC showed the strongest both protective and curative activities and the protective activities of the chemicals were generally higher than the curative activities. Hexaconazole EC and Tebuconazole EC controlled the disease by 64% and 73%, respectively, and the two chemicals reduced the disease by 45% and 39%, respectively, when they were applied one day after pathogen inoculation. These results indicate that both Hexaconazole EC and Tebuconazole EC could be used to control sharp eyespot on wheat.

A Duplex PCR for Detection of Phytophthora katsurae Causing Chestnut Ink Disease (밤나무 잉크병균, Phytophthora katsurae의 검출을 위한 Duplex PCR)

  • Lee, Dong-Hyeon;Lee, Sun-Keun;Kim, Hye-Jeong;Lee, Sang-Hyun;Lee, Sang-Yong;Lee, Jong-Kyu
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Phytophthora katsurae is a fungal pathogen responsible for chestnut ink disease. We designed two duplex primer sets (SOPC 1F/1R+KatI 3F/5R, SOPC 1-1F/1-1R+KatI 3F/5R) to detect P. katsurae. SOPC 1F/1R and SOPC 1-1F/1-1R primer pairs were designed for sequence characteristic amplification regions (SCAR) marker, and KatI 3F/5R primer pair was used for P. katsurae-specific primer designed from internal transcribed spacer (ITS) region. To assess the sensitivity of duplex PCR, genomic DNA was serially diluted 10-fold to make the final concentrations from 1 mg/ml to 1 ng/ml. The sensitivity for two primer sets were 1 ${\mu}g/ml$ and 100 ng/ml, respectively. To find detection limits for zoospores of P. katsurae, each zoospore suspension was serially diluted 10-fold to make the final concentrations from $1{\times}10^6$ to $1{\times}10^2$ cells/ml, and then DNA was extracted. The limits of detection for all of two primer sets were $1{\times}10^5$ cells/ml. All of two primer sets were specific to P. katsurae in PCR detection and did not produce any P. katsurae-specific PCR amplicons from other 16 Phytophthora species used as the control. This study shows that duplex PCR using two primer sets might be a useful tool for rapid and efficient detection of P. katsurae.

Role of a Phytotoxin Produced by Fusarium oxysporum f. sp. raphani on Pathogenesis of and Resistance to the Fungus (무 시들음병균이 생산하는 Phytotoxin의 병원성 및 저항성에서 역할)

  • Shim, Sun-Ah;Kim, Jin-Cheol;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.626-632
    • /
    • 2013
  • In the course of a developing screening method for resistant radish to Fusarium oxysporum f. sp. raphani, we found that the fungus produces phytotoxic compound against Raphanus sativus. The culture filtrate of F. oxysporum f. sp. raphani KR1 represented the strongest phytotoxicity when the fungus was incubated in the malt extract broth with 150 rpm at $25^{\circ}C$ for 14 days. Under bioassay-guided purification, we isolated a substance from liquid culture of F. oxysporum f. sp. raphani KR1, with phytotoxic effect against R. sativus. The compound was identified as fusaric acid by mass and nuclear magnetic resonance spectral analyses. Phytotoxicity of the compound against cruciferous vegetable crops, including radish, cabbage, and broccoli, was investigated. Fusaric acid represented phytotoxicity on radish seedlings by concentration dependant manner. And the phytotoxin demonstrated strong phytotoxicity on the resistant cultivars as well as susceptible cultivars of radish to F. oxysporum f. sp. raphani. In addition, fusaric acid isolated from the fungus also showed a potent phytotoxic efficacy against non-host Brassicaceae crops of the fungus such as cabbage and broccoli. The results demonstrate that fusaric acid produced by F. oxysporum f. sp. raphani is non-host-specific toxin and for screening of resistant radish to the fungal pathogen, spore suspension of the fungus without the phytotoxin has to be used.

Resistance Characteristics of Watermelon Cultivars to Fusarium oxysporum f. sp. niveum (수박 품종들의 덩굴쪼김병균에 대한 저항성 특성)

  • Soo Min Lee;Eun Ju Jo;Hun Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.258-267
    • /
    • 2023
  • Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon) is a serious disease in watermelon cultivation. Most of commercialized watermelon cultivars to Fusarium wilt are susceptible in Korea. Fon isolates were divided into four races (races 0, 1, 2, and 3), based on pathogenicity in four watermelon differentials including 'Sugar baby', 'Charleston gray', 'Calhoun gray' and 'PI-296341-FR'. We obtained 7 isolates of Fon and tested to determine race of the fungal strains. Fon KACC 40902 and Fon HA were race 0 and Fon NW1, Fon NW2, Fon CW and Fon KACC 40901 were race 1. And Fon KACC 40905 was race 2, but race 3 isolate of Fon was not founded. We also tested virulence of seven Fon isolates on three-susceptible cultivars of watermelon. The isolates showed different virulence on the cultivars. In addition, to study the resistance characteristics of watermelon to Fon, we selected three moderately or highly resistant cultivars of watermelon and occurrence of Fusarium wilt in seedlings of the cultivars by seven Fon isolates was investigated. Among them, 'Calhoun gray' is highly resistant to six Fon isolates except Fon KACC 40905. On the other two cultivars, disease severity of Fusarium wilt caused by each isolate was positively correlated with the virulence of the Fon isolates. The results suggest that resistance of the watermelon cultivars to Fon isolates is likely affected by the virulence of the pathogen.