Synthesis of Pyto-patch as Silver Nanoparticle Product and Antimicrobial Activity

은나노 제품인 Pyto-patch의 제조공정 및 Pyto-patch의 고추 탄저병 방제효과

  • Received : 2012.02.22
  • Accepted : 2012.04.03
  • Published : 2012.06.30

Abstract

The commercial product "pyto-patch" prepared as nano sized silver particle less than 5 nm, has effective antifungal activity against Collectotrichum gloeosporioides, Botrytis cinerea, Sclerotinia sclerotiorum in vitro. As a fungal growth inhibiton mechanism, it can reduce spore germination rate and mycelial growth. As s promising fungicide, Phyto-patch can control anthracnose effectively. The spore of C. gloeosporioides dipped in 5 ppm phyto-patch dilute suppressed germination rate to 13.2%, and mycelial growth stopped for 15 days at 10 ppm. The spore postinoculated on 10 ppm phyto-path smeared PDA surface could not germinate for 3 days and prohibit pathogen infection effectively. In field test, the anthracnose development of 4 ppm phyto-patch treated plot was less than 7% after 21 days compaired to 40% of it in untreated plot. In heavy rainfall season, pepper anthracnose effectivly contrrolled by regular 10 ppm phytopatch spraying every 7 days. The diseased pepper fruit decreased to 5.8% compaired to 94.6% in untreated plot. During drying period, the diseased pepper fruit havested in phyto-patch treated plot was 24.2%, but pepper fruit havested in untreated plot destroyed to 100% within 3 days. The nano silver particle coated on multching textile prevented late blight of pepper effectively and disease occurance delayed about month.

나노 크기인 5nm 이하로 제조한 은나노제품(파이투패치)은 주요 식물병원균인 탄저병원균(Collectotrichum gloeosporioides), 잿빛곰팡이병원균(Botrytis cinerea), 균핵병원균(Sclerotinia sclerotiorum)에 대해 포자발아 및 균사생장을 억제하는 항균력이 있었다. 파이투패치 살포에 의한 고추탄저병 방제효과를 실험하기 위해 파이투패치 희석액에 포자를 침지하여 포습시킨 후 발아율을 조사한 결과 5ppm까지 희석한 처리구에서 병원균의 포자발아억제효과를 보였으며, 균사는 10ppm에서 생장억제효과가 15일간 지속되었다. 특히 파이투패치를 10ppm으로 희석하여 배지표면에 도말한 후 탄저병원균 포자를 접종하면 3일간 발아가 억제되어 식물체 감염을 효과적으로 예방하였으며, 40% 이상 발병한 시험구에 4ppm 파이투패치를 살포한 결과 21일 후 7% 이하의 발병과율로 무처리 대비 70% 방제효과가 있었다. 장마철 탄저병 발생율이 94.6%인 시험포장에서 10ppm 농도로 파이투패치를 7일간격으로 엽면살포한 결과 발병과 발생율이 5.8%로 방제효과를 확인하였으며, 수확한 홍고추를 자연건조한 후에도 발병과율이 24.2%로 건고추 수확량도 증가하였다. 장마철 고추역병(Phytophthora capsici)은 장마가 끝난 무피복시험구에서 8월 11일 15%이었으며 고온기를 지난 9월 7일에는 발병율이 74%로 수확을 포기하였으나, 파이투패치를 코팅처리한 피복재를 씌운 시험구에서는 발병주가 2.3%로 장마철 역병발생이 효과적으로 방제되었다.

Keywords

References

  1. Baker, C., A. Pradhan, L. Pakstis, D.J. Pochan, and S.I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5:244-249. https://doi.org/10.1166/jnn.2005.034
  2. Cho, K.H., J.E. Park, T. Osaka, and S.G. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51: 956-960. https://doi.org/10.1016/j.electacta.2005.04.071
  3. Franke, S., G. Grass, and D.H. Nies. 2001. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiol. 147:965-972.
  4. Jo, Y.K., B.H. Kim, and G. Jung. 2009. Antifungal activity of silver ions and naniparticles on phytopathogenic fungi. Plant Dis. 93:1037-1043. https://doi.org/10.1094/PDIS-93-10-1037
  5. Lee, B.U., S.H. Yun, J.-H. Ji, and G.-N. Bae. 2008. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J. Microbiol. Biotechnol. 18:176-182.
  6. Lok, C.N., C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, and C.M. Chen. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome. Res. 5:916-924. https://doi.org/10.1021/pr0504079
  7. Melaiye, A., Z. Sun, K. Hindi, A. Milsted, D. Ely, D.H. Reneker, C.A. Tessier, and W.J. Youngs. 2005. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospum tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc. 127:2285-2291. https://doi.org/10.1021/ja040226s
  8. Nasrollahi, A., Kh. Pourshamsian, and P. Mansourkiae. 2011. Antifungal activity of silver nanoparticles on some of fungi. IJND 233-239.
  9. Silver, S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27:341-353. https://doi.org/10.1016/S0168-6445(03)00047-0
  10. Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275:177-182. https://doi.org/10.1016/j.jcis.2004.02.012