• 제목/요약/키워드: fungal identification

검색결과 303건 처리시간 0.025초

생물농약개발을 위한 활성미생물의 분리동정에 관한 연구 (Isolation and Identification of Activated Microorganisms for Biocide Development)

  • 이장훈;강병곤;권혁구;정준오;남윤구
    • 한국환경보건학회지
    • /
    • 제31권1호
    • /
    • pp.31-38
    • /
    • 2005
  • An anti-fungal material produced by actinomycetes was isolated from domestic soil. This actinomycetes was identified as Streptomyces albogriseus by 16S rDNA sequence. YEME (yeast extract 4 g, malt extract 10 g, glucose 4 g, D.W 1l, pH 7.00.2) medium was used for production of anti-fungal materials. S. albogriseus was cultured in a shaking incubator for 2 weeks at 150 rpm and $25^{\circ}C$. An anti-fungal material produced by S. albogriseus was identified at 340 nm by uv/vis- spectrometer and it showed powerful anti-fungal activity. This is the first report that secondary metabolite produced by S. albogriseus showed an activity against phytopathogenic fungi such as Collectrichum coccodes, Botrytis cinerea, Cladosporium cucumerinum, Didymella bryoniae.

First report of seven unrecorded bambusicolous fungi in Korea

  • Sun Lul Kwon;Minseo Cho;Changmu Kim;Jae-Jin Kim
    • Journal of Species Research
    • /
    • 제13권2호
    • /
    • pp.111-126
    • /
    • 2024
  • Korean bamboo forests encompass 22,067 hectares and are dominated by Phyllostachys species. These forests serve as vital ecosystems, providing nourishment and habitat for diverse flora, fauna, and microorganisms. Among these inhabitants, various fungal species have been documented worldwide, displaying ecological roles as saprobes, parasites, and symbionts within or outside the bamboo host. However, a comprehensive study of bambusicolous fungi within the Korean bamboo ecosystem remains a critical gap in our knowledge. In this study, we conducted an extensive survey of bamboo materials collected from various bamboo forests and subsequently undertook fungal isolation. Primary identification of bambusicolous fungi was achieved through analysis of the internal transcribed spacer (ITS) region. As a result, we identified seven previously unrecorded bambusicolous fungal species (Fusarium bambusarum, Fusicolla violacea, Macroconia gigas, Neopestalotiopsis camelliae-oleiferae, Neopestalotiopsis iberica, Neopestalotiopsis longiappendiculata, and Thyridium punctulatum). Phylogenetic analysis using protein-coding genes appropriate for each taxon and morphological observation were conducted to ensure accurate identification. This study contributes to our understanding of fungal diversity within bamboo forests in Korea.

순창군 장류로부터 분리된 황국균의 동정 및 특성 (Identification and Characterization of Aspergillus oryzae Isolated from Soybean Products in Sunchang County)

  • 임은미;이지영;모하메드;한갑훈;이보순;조용식;김현영
    • 한국균학회지
    • /
    • 제42권4호
    • /
    • pp.282-288
    • /
    • 2014
  • 본 연구에서는 순창지역에서 만들어지는 장류에서 곰팡이를 분리하고 동정하여 보다 안전하고 기능성이 높은 발효제품을 위한 균주를 확보하고자 하였다. 순창지역에서 생산되는 장류 제품으로부터 곰팡이를 분리하여 ${\beta}$-tubulin 유전자 분석 통해 10개의 균주가 Aspergillus oryzae/flavus complex임을 알 수 있었다. 보다 정확한 동정을 위하여 아플라톡신 클러스터 유전자 중에 하나인 omtA의 염기서열을 증폭하여 A. oryzae와 A. flavus 표준 균주의 omtA 서열과 함께 계통 분류한 결과, A. oryzae의 표준 균주와의 유연관계가 높음을 알 수 있었다. 또한 norB-cypA 사이의 염기서열을 증폭한 결과 500 bp이 증폭 산물이 확인되었는데 이는 표준 균주인 A. oryzae의 norB-cypA 사이의 염기서열 증폭 산물과 동일한 크기임을 확인할 수 있었다. A. oryzae로 확인된 10균주를 활용하여 코지를 제조하고 ${\alpha}$-amylase 활성과 protease 활성을 측정하였다. Protease 활성은 6, 13, 17, 27, 37, 그리고 38 균주로 제조된 코지는 대조구(시판되고 있는 종균으로 제작한 코지)보다 2배 정도 높은 protease 활성을 보였으며, ${\alpha}$-amylase 활성은 257~320 U/mL로 측정되었다. 식품안전성을 위한 아플라톡신 분비 확인 결과, 63번 균주로 제조된 코지를 제외한 모든 코지에서 아플라톡신을 만들지 않는 것으로 확인되어, 순창에서 분리된 A. oryzae는 추후 메주 접종균으로 개발할 수 있음을 보여주었다.

In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes

  • Detry, Nicolas;Choi, Jaeyoung;Kuo, Hsiao-Che;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제42권3호
    • /
    • pp.241-248
    • /
    • 2014
  • NADPH oxidases (Noxes), transmembrane proteins found in most eukaryotic species, generate reactive oxygen species and are thereby involved in essential biological processes. However, the fact that genes encoding ferric reductases and ferric-chelate reductases share high sequence similarities and domains with Nox genes represents a challenge for bioinformatic approaches used to identify Nox-encoding genes. Further, most studies on fungal Nox genes have focused mainly on functionality, rather than sequence properties, and consequently clear differentiation among the various Nox isoforms has not been achieved. We conducted an extensive sequence analysis to identify putative Nox genes among 34 eukaryotes, including 28 fungal genomes and one Oomycota genome. Analyses were performed with respect to phylogeny, transmembrane helices, di-histidine distance and glycosylation. Our analyses indicate that the sequence properties of fungal Nox genes are different from those of human and plant Nox genes, thus providing novel insight that will enable more accurate identification and characterization of fungal Nox genes.

Histone Acetylation in Fungal Pathogens of Plants

  • Jeon, Junhyun;Kwon, Seomun;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2014
  • Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

Identification of Sapstain Fungi on Weathered Wooden Surfaces of Buildings at Jangheung and Jeju Island

  • YUN, Jeonghee;SHIN, Hee Chang;HWANG, Won Joung;YOON, Sae-Min;KIM, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권6호
    • /
    • pp.591-601
    • /
    • 2021
  • Recently it is trend to increase wood use as carbon neutral materials, there is recognized to need necessarily durability improvement of wooden building. It is very rare to report existing on the identification of isolates causing discoloration in domestic weathered wooden building used for long period. The objective of this study was identification of fungi that cause discoloration on the exteriors of weathered domestic wooden buildings in the southern part of South Korea. Our findings can be helpful to establish protection technology for weather deterioration of domestic wooden buildings. Wood chip samples presumed to be contaminated with sapstain fungi were collected from the surface of wooden members used in wooden buildings at Jangheung, Jeollanam-do (two locations, #13 and #14), and Jeju Island (two locations, #31 and #33). The growth of microorganisms was confirmed by performing culture tests for the collected samples, and fungi were isolated, purified, and identified. The results indicated that the fungal strains isolated from wooden buildings #13 and #14 at Jangheung, Jeollanam-do, were 99.83% and 100% homologous to Aureobasidium melanogenum, respectively. For wooden building #31 at Jeju Island (two locations), the fungal strain isolated was 100% homologous to A. melanogenum, which is the same species isolated from the wooden buildings at Jangheung. The fungal strain isolated from wooden building #33 (Jeju Island) had 99.83% homology with A. pullulans, which is commonly found in wood degraded by weather or ultraviolet rays. Our findings can be utilized as a basis for establishing protection technology in domestic wooden buildings.

Nine New Records of Ascomycetes from Different Niches in Korea

  • Pangging, Monmi;Nguyen, Thuong Thuong Thi;Lee, Hyang Burm
    • 한국균학회지
    • /
    • 제49권3호
    • /
    • pp.259-283
    • /
    • 2021
  • We isolated nine fungal strains from different environmental materials collected from different locations during a survey of fungal diversity in Korea. Using molecular phylogenetic analyses and morphological characteristics, nine previously undescribed strains were identified and assigned to the species Collariella robusta, Fusicolla acetilerea, Hongkongmyces pedis, Hongkongmyces snookiorum, Mariannaea fusiformis, Metarhizium pemphigi, Pallidocercospora crystallina, Scopulariopsis candida, and Volutella citrinella. Diverse environmental samples may thus be a promising source for isolating and investigating novel fungal species, thus sampling efforts should be increased in future studies. This study also reports identification of some rare fungal species belonging to the genera Hongkongmyces and Pallidocercospora from Korea.

Sordariomycetes에 속하는 5종의 미기록 내생균 (Five Unrecorded Endophytic Fungal Species in Sordariomycetes from Korea)

  • 차재의;김은주;김윤정;엄안흠
    • 한국균학회지
    • /
    • 제51권4호
    • /
    • pp.335-347
    • /
    • 2023
  • Sordariomycetes is the second largest class of Ascomycota, distributed throughout various habitat including terrestrial and aquatic environments and also existing as endophytes. We isolated endophytic fungal strains in Korea, identifying them based on their morphological characteristics and molecular analyses, using eight specific DNA regions for accurate genus identification. We identified five previously unrecorded endophytic fungal species in Korea: Chaetomium subaffine, Colletotrichum jiangxiense, Colletotrichum sydowii, Diaporthe vacuae and Neurospora tetraspora. In this study, we describe the morphological characteristics and present our phylogenetic analyses of these five fungal species.

Culturable Fungal Endophytes Isolated from the Roots of Coastal Plants Inhabiting Korean East Coast

  • Kim, Hyun;You, Young-Hyun;Yoon, Hyeokjun;Seo, Yeonggyo;Kim, Ye-Eun;Choo, Yeon-Sik;Lee, In-Jung;Shin, Jae-Ho;Kim, Jong-Guk
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.100-108
    • /
    • 2014
  • Twelve plant species were collected from the east coast of Korea to identify culturable endophytes present in their roots. The fungal internal transcribe spacer (ITS) region (ITS1-5.8SrRNA-ITS2) was used as a DNA barcode for identification of fungi. A total of 194 fungal strains were identified and categorized into 31 genera. The genus Penicillium accounted for the largest number of strains, followed by the genus Aspergillus. Furthermore, using 5 statistical methods, the diversity indices of the fungi were calculated at the genus level. After comprehensive evaluation, the endophytic fungal group from Phragmites australis ranked highest in diversity analyses. Several strains responsible for plant growth and survival (Penicillium citrinum, P. funiculosum, P. janthinellum, P. restrictum, and P. simplicissimum), were also identified. This study provides basic data on the sheds light on the symbiotic relationship between coastal plants and fungi.