DOI QR코드

DOI QR Code

In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes

  • Detry, Nicolas (Department of Forest Sciences, University of Helsinki) ;
  • Choi, Jaeyoung (Fungal Bioinformatics Laboratory, Center for Fungal Pathogenesis, and Department of Agricultural Biotechnology, Seoul National University) ;
  • Kuo, Hsiao-Che (Department of Forest Sciences, University of Helsinki) ;
  • Asiegbu, Fred O. (Department of Forest Sciences, University of Helsinki) ;
  • Lee, Yong-Hwan (Department of Forest Sciences, University of Helsinki)
  • Received : 2014.08.12
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

NADPH oxidases (Noxes), transmembrane proteins found in most eukaryotic species, generate reactive oxygen species and are thereby involved in essential biological processes. However, the fact that genes encoding ferric reductases and ferric-chelate reductases share high sequence similarities and domains with Nox genes represents a challenge for bioinformatic approaches used to identify Nox-encoding genes. Further, most studies on fungal Nox genes have focused mainly on functionality, rather than sequence properties, and consequently clear differentiation among the various Nox isoforms has not been achieved. We conducted an extensive sequence analysis to identify putative Nox genes among 34 eukaryotes, including 28 fungal genomes and one Oomycota genome. Analyses were performed with respect to phylogeny, transmembrane helices, di-histidine distance and glycosylation. Our analyses indicate that the sequence properties of fungal Nox genes are different from those of human and plant Nox genes, thus providing novel insight that will enable more accurate identification and characterization of fungal Nox genes.

Keywords

References

  1. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245-313. https://doi.org/10.1152/physrev.00044.2005
  2. Sumimoto H. Structure, regulation and evolution of Noxfamily NADPH oxidases that produce reactive oxygen species. FEBS J 2008;275:3249-77. https://doi.org/10.1111/j.1742-4658.2008.06488.x
  3. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engine of ROS signaling. Curr Opin Plant Biol 2011;14:691-9. https://doi.org/10.1016/j.pbi.2011.07.014
  4. Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 2011;49:369-90. https://doi.org/10.1146/annurev-phyto-072910-095355
  5. Scott B, Eaton CJ. Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 2008;11:488-93. https://doi.org/10.1016/j.mib.2008.10.008
  6. Lara-Ortiz T, Riveros-Rosas H, Aguirre J. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 2003;50:1241-55. https://doi.org/10.1046/j.1365-2958.2003.03800.x
  7. Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 2008;7:1352-61. https://doi.org/10.1128/EC.00137-08
  8. Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 2007;104:11772-7. https://doi.org/10.1073/pnas.0700574104
  9. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungusperennial ryegrass mutualistic interaction. Plant Cell 2006;18: 1052-66. https://doi.org/10.1105/tpc.105.039263
  10. Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C. PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 2009;37:D261-6. https://doi.org/10.1093/nar/gkn680
  11. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C. T-Coffee: a web server for multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 2011;39:W13-7. https://doi.org/10.1093/nar/gkr245
  12. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39:W29-37. https://doi.org/10.1093/nar/gkr367
  13. Choi J, Cheong K, Jung K, Jeon J, Lee GW, Kang S, Kim S, Lee YW, Lee YH. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 2013;41:D714-9. https://doi.org/10.1093/nar/gks1163
  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404
  15. Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998;6:175-82.
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  17. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012;40:D306-12. https://doi.org/10.1093/nar/gkr948
  18. Julenius K. NetCGlyc 1.0: prediction of mammalian Cmannosylation sites. Glycobiology 2007;17:868-76. https://doi.org/10.1093/glycob/cwm050
  19. Julenius K, Molgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2005;15:153-64. https://doi.org/10.1093/glycob/cwh151
  20. Choi J, Detry N, Kim KT, Asiegbu FO, Valkonen JP, Lee YH. fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiol 2014;14:117. https://doi.org/10.1186/1471-2180-14-117
  21. Brun S, Malagnac F, Bidard F, Lalucque H, Silar P. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 2009;74:480-96. https://doi.org/10.1111/j.1365-2958.2009.06878.x
  22. Giesbert S, Schurg T, Scheele S, Tudzynski P. The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol Plant Pathol 2008;9:317-27. https://doi.org/10.1111/j.1364-3703.2008.00466.x
  23. Malagnac F, Lalucque H, Lepere G, Silar P. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 2004;41:982-97. https://doi.org/10.1016/j.fgb.2004.07.008
  24. Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 2008;21:808-19. https://doi.org/10.1094/MPMI-21-6-0808
  25. Yang SL, Chung KR. The NADPH oxidase-mediated production of hydrogen peroxide ($H_2O_2$) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol Plant Pathol 2012;13:900-14. https://doi.org/10.1111/j.1364-3703.2012.00799.x
  26. Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 2005;13:111-8. https://doi.org/10.1016/j.tim.2005.01.007
  27. Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H, Weinberger M, Stolze K, Grousl T, Hasek J, et al. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci U S A 2012;109:8658-63. https://doi.org/10.1073/pnas.1201629109