• Title/Summary/Keyword: functionally graded core

Search Result 97, Processing Time 0.02 seconds

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method

  • Hakim Bentrar;Sidi Mohammed Chorfi;Sid Ahmed Belalia;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.551-567
    • /
    • 2023
  • In this work, the free vibration analysis of functionally graded material (FGM) sandwich plates with porosity is conducted using the p-version of the finite element method (FEM), which is based on the first-order shear deformation theory (FSDT). The sandwich plate consists of two face-sheet layers of FGM and a homogeneous core layer. The obtained results are validated using convergence and comparison studies with previously published results. Five porosities distribution models of FGM sandwich plates are assumed and analyzed. The effect of the thickness ratio, boundary conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on the natural frequency are addressed.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates

  • Boussoula, Abderrafik;Boucham, Belhadj;Bourada, Mohamed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.197-218
    • /
    • 2020
  • In this work, thermomechanical flexural analysis of functionally graded material sandwich plates with P-FGM face sheets and E-FGM and symmetric S-FGM core is performed by employing a nth-order shear deformation theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face sheets and a symmetric S-FGM hard core are considered. By employing only four unknown variables, the governing equations are obtained based on the principle of virtual work and then Navier method is used to solve these equations. Analytical solutions are deduced to compute the stresses and deflections of simply supported S-FGM sandwich plates. The effects of volume fraction variation, geometrical parameters and thermal load on thermomechanical flexural behavior of the symmetric FGM sandwich plates are investigated.

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2018
  • Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.

Thermomechanical bending investigation of FGM sandwich plates using four shear deformation plate theory

  • Bouamoud, Ahmed;Boucham, Belhadj;Bourada, Fouad;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.611-632
    • /
    • 2019
  • In this work, a four-variable refined plate model is applied to study the thermomechanical bending of two kinds of functionally graded material (FGM) sandwich plates. The sandwich core of one kind is isotropic with the FGM face sheets whereas in the second kind, the sandwich core is FGM with the isotropic and homogeneous face sheets. By considering only four unknown variables, the governing equations are written based on the principle of virtual work and then Navier method is employed to solve these equations. Deflections and stresses of two kinds of FGM sandwich structures are analyzed and discussed. The validity and efficiency of the proposed model is checked by comparing it with various available solutions in the literature. The effects of volume fraction distribution, geometric ratio and thermal load on thermomechanical bending properties of FGM sandwich plate are investigated in detail.

Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method

  • Emdadi, Mohsen;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.109-123
    • /
    • 2019
  • In this article, the free vibration analysis of annular sandwich plates with various functionally graded (FG) porous cores and carbon nanotubes reinforced composite (CNTRC) facesheets is investigated based on modified couple stress theory (MCST) and first order shear deformation theories (FSDT). The annular sandwich plate is composed of two face layers and a functionally graded porous core layer which contains different porosity distributions. Various approaches such as extended mixture rule (EMR), Eshelby-Mori-Tanaka (E-M-T), and Halpin-Tsai (H-T) are used to determine the effective material properties of microcomposite circular sandwich plate. The governing equations of motion are extracted by using Hamilton's principle and FSDT. A Ritz method has been utilized to calculate the natural frequency of an annular sandwich plate. The effects of material length scale parameters, boundary conditions, aspect and inner-outer radius ratios, FG porous distributions, pore compressibility and volume fractions of CNTs are considered. The results are obtained by Ritz solutions that can be served as benchmark data to validate their numerical and analytical methods in the future work and also in solid-state physics, materials science, and micro-electro-mechanical devices.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.